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don’t know the coin used for each set of tosses. 
However, if we had some way of completing the 
data (in our case, guessing correctly which coin 
was used in each of the five sets), then we could 
reduce parameter estimation for this problem 
with incomplete data to maximum likelihood 
estimation with complete data.

One iterative scheme for obtaining comple-
tions could work as follows: starting from some 
initial parameters, θˆ ˆ ˆ= θΑ

   ,θΒ  
(t) (t)(t) ( ), determine for 

each of the five sets whether coin A or coin B 
was more likely to have generated the observed 
flips (using the current parameter estimates). 
Then, assume these completions (that is, 
guessed coin assignments) to be correct, and 
apply the regular maximum likelihood estima-
tion procedure to get θˆ(t+1). Finally, repeat these 
two steps until convergence. As the estimated 
model improves, so too will the quality of the 
resulting completions.

The expectation maximization algorithm 
is a refinement on this basic idea. Rather than 
picking the single most likely completion of the 
missing coin assignments on each iteration, the 
expectation maximization algorithm computes 
probabilities for each possible completion of 
the missing data, using the current parameters 
θˆ(t). These probabilities are used to create a 
weighted training set consisting of all possible 
completions of the data. Finally, a modified 
version of maximum likelihood estimation 
that deals with weighted training examples 
provides new parameter estimates, θˆ(t+1). By 
using weighted training examples rather than 
choosing the single best completion, the expec-
tation maximization algorithm accounts for 
the confidence of the model in each comple-
tion of the data (Fig. 1b).

In summary, the expectation maximiza-
tion algorithm alternates between the steps 

z = (z1, z2,…, z5), where xi ∈ {0,1,…,10} is the 
number of heads observed during the ith set of 
tosses, and zi ∈ {A,B} is the identity of the coin 
used during the ith set of tosses. Parameter esti-
mation in this setting is known as the complete 
data case in that the values of all relevant ran-
dom variables in our model (that is, the result 
of each coin flip and the type of coin used for 
each flip) are known.

Here, a simple way to estimate θA and θB is 
to return the observed proportions of heads for 
each coin: 

     (1)θΑ
ˆ =

# of heads using coin A
total # of flips using coin A

and

θΒ
ˆ =

# of heads using coin B
total # of flips using coin B

This intuitive guess is, in fact, known in the 
statistical literature as maximum likelihood 
estimation (roughly speaking, the maximum 
likelihood method assesses the quality of a 
statistical model based on the probability it 
assigns to the observed data). If logP(x,z;θ) is 
the logarithm of the joint probability (or log-
likelihood) of obtaining any particular vector 
of observed head counts x and coin types z, 
then the formulas in (1) solve for the param-
eters θˆ ˆ ˆ=  θ

A
,θ

B
( )  that maximize logP(x,z;θ).

Now consider a more challenging variant of 
the parameter estimation problem in which we 
are given the recorded head counts x but not 
the identities z of the coins used for each set 
of tosses. We refer to z as hidden variables or 
latent factors. Parameter estimation in this new 
setting is known as the incomplete data case. 
This time, computing proportions of heads 
for each coin is no longer possible, because we 

Probabilistic models, such as hidden Markov 
models or Bayesian networks, are com-

monly used to model biological data. Much 
of their popularity can be attributed to the 
existence of efficient and robust procedures 
for learning parameters from observations. 
Often, however, the only data available for 
training a probabilistic model are incomplete. 
Missing values can occur, for example, in medi-
cal diagnosis, where patient histories generally 
include results from a limited battery of tests. 
Alternatively, in gene expression clustering, 
incomplete data arise from the intentional 
omission of gene-to-cluster assignments in the 
probabilistic model. The expectation maximi-
zation algorithm enables parameter estimation 
in probabilistic models with incomplete data.

A coin-flipping experiment
As an example, consider a simple coin-flip-
ping experiment in which we are given a pair 
of coins A and B of unknown biases, θA and 
θB, respectively (that is, on any given flip, coin 
A will land on heads with probability θA and 
tails with probability 1–θA and similarly for 
coin B). Our goal is to estimate θ = (θA,θB) by 
repeating the following procedure five times: 
randomly choose one of the two coins (with 
equal probability), and perform ten indepen-
dent coin tosses with the selected coin. Thus, 
the entire procedure involves a total of 50 coin 
tosses (Fig. 1a).

During our experiment, suppose that we 
keep track of two vectors x = (x1, x2, …, x5) and 
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log probability logP(x;θ) of the observed data. 
Generally speaking, the optimization problem 
addressed by the expectation maximization 
algorithm is more difficult than the optimiza-
tion used in maximum likelihood estimation. 
In the complete data case, the objective func-
tion logP(x,z;θ) has a single global optimum, 
which can often be found in closed form (e.g., 
equation 1). In contrast, in the incomplete data 
case the function logP(x;θ) has multiple local 
maxima and no closed form solution.

To deal with this, the expectation maximi-
zation algorithm reduces the difficult task of 
optimizing logP(x;θ) into a sequence of simpler 
optimization subproblems, whose objective 
functions have unique global maxima that can 
often be computed in closed form. These sub-
problems are chosen in a way that guarantees 
their corresponding solutions θˆ(1)

,θˆ(2)
,… and 

will converge to a local optimum of logP(x;θ).
More specifically, the expectation maxi-

mization algorithm alternates between two 
phases. During the E-step, expectation maxi-
mization chooses a function gt that lower 
bounds logP(x;θ) everywhere, and for which 

θˆ(t)g
t
(     )=logP(x;      )θˆ(t) . During the M-step, the 

expectation maximization algorithm moves 
to a new parameter set θˆ(t+1) that maximizes 
gt. As the value of the lower-bound gt matches 
the objective function at θˆ(t), it follows that 

g
t
(        )=logP(x;      )θˆ(t) θˆ (t)g

t
(     ) ≤ θˆ(t+1) = logP(x;         )θˆ(t+1) — s o 

the objective function monotonically increases 
during each iteration of expectation maximiza-
tion! A graphical illustration of this argument 
is provided in Supplementary Figure 1 online, 
and a concise mathematical derivation of the 
expectation maximization algorithm is given 
in Supplementary Note 1 online.

As with most optimization methods for 
nonconcave functions, the expectation maxi-
mization algorithm comes with guarantees 
only of convergence to a local maximum of 
the objective function (except in degenerate 
cases). Running the procedure using multiple 
initial starting parameters is often helpful; 
similarly, initializing parameters in a way that 
breaks symmetry in models is also important. 
With this limited set of tricks, the expectation 
maximization algorithm provides a simple 
and robust tool for parameter estimation in 
models with incomplete data. In theory, other 
numerical optimization techniques, such as 
gradient descent or Newton-Raphson, could 
be used instead of expectation maximization; 
in practice, however, expectation maximization 
has the advantage of being simple, robust and 
easy to implement.

Applications
Many probabilistic models in computational 
biology include latent variables. In some 

was analyzed more generally by Hartley2 and by 
Baum et al.3 in the context of hidden Markov 
models, where it is commonly known as the 
Baum-Welch algorithm. The standard refer-
ence on the expectation maximization algo-
rithm and its convergence is Dempster et al4.

Mathematical foundations
How does the expectation maximization algo-
rithm work? More importantly, why is it even 
necessary?

The expectation maximization algorithm is 
a natural generalization of maximum likeli-
hood estimation to the incomplete data case. In 
particular, expectation maximization attempts 
to find the parameters θˆ  that maximize the 

of guessing a probability distribution over 
completions of missing data given the current 
model (known as the E-step) and then re-
estimating the model parameters using these 
completions (known as the M-step). The name 
‘E-step’ comes from the fact that one does not 
usually need to form the probability distribu-
tion over completions explicitly, but rather 
need only compute ‘expected’ sufficient statis-
tics over these completions. Similarly, the name 
‘M-step’ comes from the fact that model reesti-
mation can be thought of as ‘maximization’ of 
the expected log-likelihood of the data.

Introduced as early as 1950 by Ceppellini et 
al.1 in the context of gene frequency estima-
tion, the expectation maximization algorithm 
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Figure 1  Parameter estimation for complete and incomplete data. (a) Maximum likelihood estimation. 
For each set of ten tosses, the maximum likelihood procedure accumulates the counts of heads and 
tails for coins A and B separately. These counts are then used to estimate the coin biases.  
(b) Expectation maximization. 1. EM starts with an initial guess of the parameters. 2. In the E-step, 
a probability distribution over possible completions is computed using the current parameters. The 
counts shown in the table are the expected numbers of heads and tails according to this distribution. 
3. In the M-step, new parameters are determined using the current completions. 4. After several 
repetitions of the E-step and M-step, the algorithm converges.
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transcriptional modules10, tests of linkage 
disequilibrium11, protein identification12 and 
medical imaging13.

In each case, expectation maximization 
provides a simple, easy-to-implement and effi-
cient tool for learning parameters of a model; 
once these parameters are known, we can use 
probabilistic inference to ask interesting que-
ries about the model. For example, what cluster 
does a particular gene most likely belong to? 
What is the most likely starting location of a 
motif in a particular sequence? What are the 
most likely haplotype blocks making up the 
genotype of a specific individual? By provid-
ing a straightforward mechanism for param-
eter learning in all of these models, expectation 
maximization provides a mechanism for build-
ing and training rich probabilistic models for 
biological applications.

Note: Supplementary information is available on the 
Nature Biotechnology website.
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and the remaining letters in each sequence as 
coming from some fixed background distribu-
tion. The observed data x consist of the letters 
of sequences, the unobserved latent factors z 
include the starting position of the motif in 
each sequence and the parameters θ describe 
the position-specific letter frequencies for 
the motif. Here, the expectation maximiza-
tion algorithm involves computing the prob-
ability distribution over motif start positions 
for each sequence (E-step) and updating the 
motif letter frequencies based on the expected 
letter counts for each position in the motif 
(M-step).

In the haplotype inference problem7, we 
are given the unphased genotypes of indi-
viduals from some population, where each 
unphased genotype consists of unordered 
pairs of single-nucleotide polymorphisms 
(SNPs) taken from homologous chromo-
somes of the individual. Contiguous blocks 
of SNPs inherited from a single chromo-
some are called haplotypes. Assuming for 
simplicity that each individual’s genotype is 
a combination of two haplotypes (one mater-
nal and one paternal), the goal of haplotype 
inference is to determine a small set of hap-
lotypes that best explain all of the unphased 
genotypes observed in the population. Here, 
the observed data x are the known unphased 
genotypes for each individual, the unobserved 
latent factors z are putative assignments of 
unphased genotypes to pairs of haplotypes 
and the parameters θ describe the frequen-
cies of each haplotype in the population. 
The expectation maximization algorithm 
alternates between using the current haplo-
type frequencies to estimate probability dis-
tributions over phasing assignments for each 
unphased genotype (E-step) and using the 
expected phasing assignments to refine esti-
mates of haplotype frequencies (M-step).

Other problems in which the expectation 
maximization algorithm plays a prominent 
role include learning profiles of protein 
domains8 and RNA families9, discovery of 

cases, these latent variables are present due 
to missing or corrupted data; in most appli-
cations of expectation maximization to com-
putational biology, however, the latent factors 
are intentionally included, and parameter 
learning itself provides a mechanism for 
knowledge discovery.

For instance, in gene expression cluster-
ing5, we are given microarray gene expression 
measurements for thousands of genes under 
varying conditions, and our goal is to group 
the observed expression vectors into distinct 
clusters of related genes. One approach is to 
model the vector of expression measurements 
for each gene as being sampled from a multi-
variate Gaussian distribution (a generalization 
of a standard Gaussian distribution to multi-
ple correlated variables) associated with that 
gene’s cluster. In this case, the observed data 
x correspond to microarray measurements, 
the unobserved latent factors z are the assign-
ments of genes to clusters, and the parameters 
θ include the means and covariance matrices 
of the multivariate Gaussian distributions 
representing the expression patterns for each 
cluster. For parameter learning, the expectation 
maximization algorithm alternates between 
computing probabilities for assignments of 
each gene to each cluster (E-step) and updat-
ing the cluster means and covariances based 
on the set of genes predominantly belonging 
to that cluster (M-step). This can be thought 
of as a ‘soft’ variant of the popular k-means 
clustering algorithm, in which one alternates 
between ‘hard’ assignments of genes to clus-
ters and reestimation of cluster means based 
on their assigned genes.

In motif finding6, we are given a set of 
unaligned DNA sequences and asked to identify 
a pattern of length W that is present (though 
possibly with minor variations) in every 
sequence from the set. To apply the expecta-
tion maximization algorithm, we model the 
instance of the motif in each sequence as hav-
ing each letter sampled independently from 
a position-specific distribution over letters, 
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