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Abstract: 

Practical statistical data clustering algorithms require multiple data scans to converge. For 
large databases, these scans become prohibitively expensive. We present a scalable 
clustering framework requiring at most one scan of the database, and apply it to the 
Expectation-Maximization (EM) algorithm. Unlike distance-based or hard membership 
algorithms (such as k-Means) EM is known to be an appropriate optimization algorithm for 
constructing proper statistical models of the data. It also easily accommodates categorical 
and continuous data fields. It admits varying degrees of data membership in multiple 
clusters. Our scalable method is based on identifying regions of the data that are 
compressible and regions that must be maintained in memory.  The approach operates 
within the confines of a limited memory buffer.  Data resolution is preserved to the extent 
possible based upon the size of the memory buffer and the fit of the current clustering 
model to the data.  We extend the framework to update multiple clustering models 
simultaneously.  Computational tests indicate that this scalable scheme outperforms 
sampling-based and incremental approaches -- the straightforward alternatives to ’scaling’ 
existing traditional in-memory implementations to large databases. 

 

Keywords: Clustering, Probabilistic modeling, Density estimation, scalable mining, EM 
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1 Introduction 

Data clustering is important in many fields, including data mining [FPSU96], statistical data analysis 

[KR89,BR93], compression [ZRL97], and vector quantization. Applications include data analysis and 

modeling [FDW97,FHS96], image segmentation, marketing, fraud detection, predictive modeling, data 

summarization, and general data reporting tasks [B*96]. It has important applications in data cleaning and 

exploratory data analysis. Clustering is a crucial data mining step and performing the task over massive 

databases is essential.  Previous scalable clustering work has focused on k-Means-type approaches 

[ZRL97,BFR98] and region growing [NH94, SEKX98, AGGR98]. These techniques, while effective, do 

not derive statistical models of the data (i.e. they are based on notions of distance metrics, etc.) and they 

do not allow for cluster overlap (i.e. a data record may belong to different clusters with different 

membership probabilities). In this paper, we focus on the task of scaling the most effective technique 

available for proper probabilistic clustering: the Expectation-Maximization (EM) algorithm [DLR77, 

CS96]. EM has additional desirable properties in that it does not require the specification of distance 

measures and readily admits categorical and continuous attributes (which is untrue of other clustering 

algorithms that either operate on continuous, e.g. k-Means-type algorithms, or categorical [GKR98] data 

exclusively). EM has been shown to be superior to other alternatives for statistical modeling purposes 

[GMPS97,PE96,B95,CS96,NH99].  

The clustering problem has been formulated in various ways in the statistics [KR89,BR93,B95,S92,S86], 

pattern recognition [DH73,F90], optimization [BMS97,SI84], and machine learning literature [F87]. The 

fundamental problem is that of grouping together (clustering) data items that are similar to each other.  

The most general view places clustering in the framework of density estimation [S86, S92, BR93].  Data 

is generally not uniformly distributed. Some combinations of attribute values are more likely than others. 

Clustering can be viewed as identifying the dense regions of the probability density of the data source. An 

effective representation of the probability density function is the mixture model: a model consisting of 

several components (e.g. a model consisting of the sum of 3 Gaussians). Each component generates a set 

of data records (a “cluster”). The data set is then a mixture of clusters and the problem is to identify the 

data points constituting a cluster and inferring the properties of the distribution governing each cluster.  

Consider a simple example with data consisting of 2 attributes: age and income. One may choose to 

model the data as a single cluster and report that the data records have an average age of 41 years and an 

average income of $26K/year (with associated variances). However, this is rather deceptive and 

uninformative. The data may be a mixture of working people, retired people, and children. A more 

informative summary is to identify these subsets or clusters, and report the cluster parameters. Results 

may now be: 20% of the data have average age 12 and zero income, 45% have average age 38 and 

average income $45K, and 30% have average age 72 and average income $20K, while 5% of data had 
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unknown incomes and ages.  Assuming we have no apriori definition of the various sub-populations, how 

do we discover what they are? Furthermore, how do we do this if the data has many more dimensions and 

the various partitions are not obvious? This is where clustering plays an important role in identifying 

these dense regions in multidimensional data. 

Density estimation via the mixture model framework can be seen as a generalization of the clustering 

problem [BB95, B95]. The EM (Expectation-Maximization) algorithm [DLR77, CS96] is an effective, 

popular technique for estimating mixture model parameters (cluster parameters and their mixture 

weights).  The EM algorithm iteratively refines initial mixture model parameter estimates to better fit the 

data and terminates at a locally optimal solution.  

Other similar iterative refinement clustering methods include the popular k-Means-type algorithms 

[M67,DH73,F90,BMS97,SI84].  While these approaches have received attention in the database and data 

mining literature [NH94,ZRL97,BFR98], they are limited in their ability to model data from a statistical 

perspective.  The k-Means algorithm attempts to minimize the sum of squares of Euclidean distances 

between data records in a cluster and the cluster’s mean vector.  This assignment criterion implicitly 

assumes that all clusters are represented by identical spherical Gaussian distributions located at different 

means [BB95, B95].  In addition, since the k-Means algorithm is married to the Euclidean metric, it does 

not generalize to the problem of clustering discrete or categorical data.  The k-Means algorithm also 

assumes each data record belongs to exactly one cluster. In reality, a data record may belong to multiple 

clusters with different probabilities of membership.  The mixture model framework is more general and 

relaxes all these assumptions. In addition, one may choose a probability distribution over categorical 

attributes (e.g. the Multinomial distribution) and naturally cluster this data type.  

Goals of this Work: We focus on scaling EM to compute mixture model parameter values over large 

databases. For large databases, hundreds of iterations or more may be required during iterative refinement 

clustering. Although guaranteed to converge finitely, a general bound on the number of iterations required 

for EM is not available. We assume a single database scan is expensive, thus computing a mixture model 

over large databases via standard EM would not be acceptable.  We present a scalable version of the EM 

algorithm that satisfies the following Data Mining Desiderata: 

1. One scan: The algorithm requires at most one database scan with early termination highly desirable. 

2. Anytime algorithm: The algorithm is always able to provide a “best” answer at anytime during its 

computation (i.e. it exhibits “online, anytime” behavior). 

3. Interruptible and Incremental: The algorithm is suspendable, stoppable and resumable.  

Incremental progress can be saved for continued computation later, possibly on new data. 

4. Limited RAM Requirement: The algorithm works within the confines of a limited memory (RAM) 

buffer, allocated by the user, insuring good behavior when run as a server process. 

5. Forward-only cursor: The algorithm has the ability to operate with a forward-only cursor over a 

view of the database. 
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A forward only-cursor respects the fact that the individual data records provided to the clustering 

algorithm may be the result of an expensive join query over a potentially distributed data warehouse. 

Hence a second scan may cause a second expensive join and should be avoided if possible. 

Contributions of this Paper: A scalable EM algorithm is introduced that satisfies the goals stated above.  

The problem of computing a mixture model is decomposed so that it is possible to cluster arbitrarily large 

databases while utilizing small amounts of memory.  The fundamental observation is that all data is not of 

equal importance when computing the mixture model. Data records can be classified into one of three 

categories: records that can be safely discarded, records that may be compressed, and records that need to 

be retained in memory. We demonstrate that the scalable EM algorithm (SEM) indeed preserves 

clustering fidelity and that it outperforms traditional ways for coping with large databases involving data 

sampling.  The framework we present can accommodate many iterative refinement type algorithms 

including k-Means [BFR98], and also supports clustering over data with mixed continuous-discrete 

attributes. The localized data access properties of SEM have additional benefits relating to improved 

utilization of fast caches and on-chip memory caches in modern CPU’s. This results in faster execution 

times even on machines that have enough resident memory to load the entire database. 

2 Preliminaries 

While the framework we present is general, we focus on its application to distributions that are mixtures 

of multivariate Gaussians.  This choice is motivated by a result from density estimation theory stating that 

any distribution can be effectively approximated by a mixture of Gaussians [S92,S86]. Each population 

(cluster) is modeled by a d-dimensional Gaussian probability distribution.  The multi-dimensional 

Gaussian distribution for cluster l, l =1,…,k, is parameterized by the d-dimensional mean vector µl and 

d×d covariance matrix Σl :  .
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x and µl are column vectors, the superscript T indicates transpose to a row vector,  | Σl | is the determinant 
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The coefficients Wl (mixture weights) represent the fraction of the database represented by the 

corresponding cluster.  A given data record x is a member of each of the k clusters with different 

probabilities of membership. Probability in population l is given by: .
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EM computes locally optimal maximum likelihood model parameter values [DLR77, CS96].  
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2.1 Classic (Vanilla) EM Algorithm 

The classic or “vanilla” EM algorithm requires initial mixture model parameter estimates as input. Given 

mixture model parameters, a single EM iteration provides new parameter estimates which are proven not 

to decrease the log likelihood of the model [DLR77,B95].  The process is repeated until the log likelihood 

of the mixture model at the previous iteration is sufficiently close to the log likelihood of the current 

model.  The algorithm proceeds as follows for our Gaussian mixture model: 

0. Given initial mixture model parameter values:  initialize the mixture model parameters, set 

current iteration j = 0:  Wl
0, µ 0,l and Σ 0,l, l = 1,…,k. 

1. Having mixture model parameters at iteration j, update them as follows: 

For each database record D∈x : 

Compute the membership probability of x in each cluster: 
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3. If ε≤+1- jj EE , stop.  Else set j = j+1 and go to 1. E j is the log likelihood of the mixture model at 

iteration j: ( )∑ ∑ ∑
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3 Model Estimation over Large Databases 

When clustering data, we implicitly assume that data records within the given database are not uniformly 

distributed. By definition clustering assumes that there exist data regions that are more dense than other 

regions.  Our goal is to exploit this fact and design an algorithm that computes an approximate solution 

(empirically, a very good solution) while operating within a limited memory (RAM) buffer in one scan or 

less of the database.  The basic scalable EM approach is summarized at a high level as follows: 

0. Initialize the mixture model parameters to given values (set by user or at random).  

1. (Fill Buffer).  Obtain a sample from the database, filling the memory buffer. 

2. (Update Mixture Model Parameters).  Apply EM to update the mixture model parameters over the 

data contents in the buffer (including previously collected summary statistics (step 3)) producing new 

mixture model parameters (see Section 3.2).   

3. (Identify Data to be Compressed).  Given the updated mixture model, identify data regions that may 

be summarized, tag data in the buffer lying in these regions (see Sections 3.3). 
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4. (Compress Data to Sufficient Statistics).  Compute sufficient for data tagged in 3.  Purge these data 

records from buffer, retaining only their sufficient statistics (see Section 3.1).   

5. (Stopping Criteria).  If stopping criteria (see Section 3.4) are not satisfied return to step 1. 

The basic intuition is to identify data subsets whose contribution to model updates can be effectively 

summarized by their sufficient statistics.  Instead of revisiting these records, updates are performed over 

their sufficient statistics. Effectively, in the single pass over the database SEM gathers a collection of data 

records and summaries (compressed versions of records). The contents of the limited memory buffer are 

intended to be as representative as possible of the entire database. After each buffer refill, the mixture 

model parameters are updated over the new sample of data records, the set of data records retained in the 

buffer, and the compressed (summarized) representations of data discarded in past iterations.  

Note that this scalable model estimation procedure satisfies the requirements set forth in the data mining 

desiderata. Clearly the algorithm works within a limited memory buffer by definition and only utilizes a 

forward-only cursor. The algorithm requires one scan (or less) of the database.  Early stopping occurs 

when the log likelihood of the model between successive iterations is stable. The algorithm is always able 

to provide a “best” answer: the current mixture model parameters. It is suspendable, stoppable and 

resumable by persisting the contents of the buffer and mixture model parameters to disk. Additional data 

can easily be accommodated to update an existing model. 

3.1 Data Summarization and Sufficient Statistics 

We focus on step 4 of the algorithm in which a set of data has already been tagged to be compressed (this 

process is described in Section 3.3), and the task at hand is to summarize it via sufficient statistics.  Let S 

be a record subset consisting of n vectors each having d attributes.  The sufficient statistics for this set are 

(θ, Γ, n), where θ and Γ are a vector and matrix sum, respectively: ∑
∈

=
Sx

x   and ∑
∈

=Γ
Sx

Txx . Note Γ is 

symmetric, there is no need to store the entire matrix. For diagonal Gaussians, Γ storage collapses to that 

of a vector. Our SEM implementation assumes diagonal covariance matrices. For d-dimensional data, the 

simplified EM model has k(2d+1) parameters to estimate: the k means, the k covariance matrix diagonals, 

and the vector of cluster weights. From (θ, Γ, n), the mean over S  (denoted here µS) and the covariance 

matrix over S (denoted as ΣS) are computed as follows: ,
1 ⋅=
n

S 




 −= TS

nn

11
 (5) 

Thus the sufficient statistics (θ, Γ, n) naturally update the mixture model parameters over S.  Another 

useful operation we define is merging two sets of sufficient statistics:  

( ) ( ) ( )212121222111 ,,,,,,, nnnnmerge +Γ+Γ+=ΓΓ θθθθ . (6) 
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3.2 Model Update over Singleton Data Records + Sufficient Statistics 

Step 2 of the scalable EM algorithm requires updating the mixture model parameters over the contents of 

the buffer, consisting of singleton data records and sets of sufficient statistics described above.  The 

Extended EM (ExEM) Algorithm performs this operation.  ExEM updates the model parameters exactly as 

the classic EM algorithm (Section 2.1) over singleton data records.  Updates over sufficient statistics treat 

the set represented by (θ, Γ, n) as a single data record weighted by n. ExEM proceeds as follows:  

0. Given the set S of singleton data records, a set T of sufficient statistics and initial mixture model 

parameters:  initialize the mixture model parameters, set iteration counter j = 0: W0
l , µ0,l,Σ0,l, l = 

1,…,k. 

1. Having mixture model parameter values at iteration j, update them as follows: 

1.1. (E-Step, Singleton Records): For singleton records S∈x  compute:  
)(Pr

)|(Pr
)|(Pr

x

x
x

j

jjW l
ll = .   

1.2. (E-Step, Sufficient Statistics) compute probability that the subset of data points summarized by 

each (θ, Γ, n) belong to population l: .,...,1,
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The value of N(l) is the total portion of the database processed so far having membership in 

population l.  The Gaussian parameters are updated as follows: ,
N
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3. (Stopping Criteria)  Stop if ε≤− +1jj EE , stop.  Otherwise set j = j+1, go to 1.  jE  is the log 

likelihood of the mixture model at iteration j over the contents of the buffer: 
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In addition to the generalization to work over sufficient statistics, ExEM also has the following 

modification:  

4. (Model Reset for Empty Clusters): Upon convergence (step 3), the ExEM algorithm employs a step 

that performs a Gaussian distribution reset if one or more of the clusters has a sum total probability of 

membership below a given threshold or if two Gaussians converge on the same parameters. This is a 

problem that plagues both EM and k-Means algorithms in high dimensions. In this case, rather than 

letting such clusters go “inactive”, The ExEM algorithm is re-run, with “inactive” clusters reseeded at 

new points.  Specifically, the Gaussian distribution for each “inactive” cluster Cl is reset to the mean 

of a compressed subset which is least likely under the current mixture model: 

( )( ) ( ) .Tn,,,
n

1~~logminarg 1j

~ 







∈⋅== + Γθθµµµ Prl The “argmin” notation means to choose the mean 

of compressed subset which is least likely under the updated mixture model. It also inherits the 

corresponding covariance matrix of the compressed subset chosen above.  Return to step 1.  

3.3 Data Compression and Summarization 

Data summarization involves two phases.  Primary data compression purges records that are unlikely to 

change membership probabilities during future SEM iterations. These are the records near the modes of 

the k cluster distributions.  Data records compressed in the primary phase constitute the set of sufficient 

statistics DS.  Secondary data compression compresses dense regions of data which are not near the 

Gaussian means.  Data records compressed in the secondary phase form the set of sufficient statistics CS. 

RS refers to the set of data records which remain in the buffer uncompressed (R is for “retained”).  

Records obtained from the database are initially read into the RS structure.  

3.3.1 Primary Data Compression  

If the current mixture model is correct, then areas near the means, µ l , l = 1,…,k will have greatest 

density.  The full mixture model can be sufficiently updated over future samples via the sufficient 

statistics of the set of data points near the modes.  Essentially the current models are accurate 

representatives of these points. Primary compression removes a proportion p of the data that is best 

represented by the current model. This is achieved by purging records from RS that have greatest log 

likelihoods. This is equivalent to finding a Mahalanobis radius [DH73] rl  from the center of each cluster l 

and purging the data items within that radius as illustrated in Figure 3.1 (shaded regions go to DSl). The 

subset of data records that is summarized near the mean of Gaussian l is precisely: 
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Figure 3.2:  Secondary data compression. 
 

Figure 3.1:  Primary data compression. 

( )( ) ( ) .k,...,1,rRSDS
T1

=






 ≤−∈=

−
llllll µΣµ xxxx - ,  The parameter p defines the amount of data 

compressed and determines rl. In Section 5.2 we show that the method is not overly sensitive to this 

parameter. We set it to 0.5 throughout all experiments. This method guarantees a compression factor of p. 

The set of sufficient statistics of all points compressed in the primary phase is DS={DS1,…,DS k}. 

3.3.2 Secondary Data Compression 

The motivation for secondary data compression is based on the observation that for a dense region of data 

not near the means of the k population Gaussians (modes), the values of  Pr( l | x) (Equation 3) will be 

approximately the same for all data records x constituting the dense region.  This can be shown as a 

property of the Gaussians in tail regions of low probability. It follows then that the value of Pr( l | µ′ ) 

will be a good approximation of this value, where µ′ is the mean of the dense subset of data records.  

Hence the updates to the mixture parameters in the ExEM algorithm basically consist of representing such 

a dense subset of data by its mean vector and covariance matrix.  Compressing dense subsets of data not 

near the k modes allows accurate update of the mixture parameters while freeing up buffer space for 

future data. Figure 3.2 illustrates this basic idea. The task is to determine these dense subsets. 

This compression phase has three parts.  The first consists of locating candidate dense regions (sub-

clusters) over the data remaining in the buffer. The second consists of applying a criterion to each of the 

candidate sub-clusters ensuring that they are sufficiently dense.  The third part is a merging pass that 

combines dense sub-clusters as long as they remain dense (as defined by previous criterion). The search 

for candidate sub-clusters takes place over RS, post primary compression purging.   

Candidate sub-clusters are determined by applying either the standard k-Means clustering algorithm 

[F90,DH73] or “harsh” EM [NH99] to RS.  The choice of these “hard” assignment clustering algorithms 

is justified by the fact to fully compress data records into sufficient statistics, records must have full 

membership in their representative sub-clusters. To increase the likelihood of identifying dense sub-
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clusters, the number of candidate sub-clusters is set to k’> k. In our experiments we simply set kk 2’≈ .   

The sub-clustering algorithm is initialized with k’ randomly selected data records from RS.    Once the 

secondary clustering algorithm has converged, we apply the “density criterion”. Subclusters having 

elements of the covariance diagonal exceeding a parameter β > 0 are discarded. Hence the sufficient 

statistics for the data in a given sub-cluster (θ, Γ, n) satisfies: βθΓ ≤












 −⋅

=

2
jjj

d,...,1j n

1

n

1
max   (8)   

Suppose k2  < k’ sub-clusters satisfy the density criterion.  The sufficient statistics of these k2  sub-clusters 

are appended to the list of the “dense” sub-clusters found in previous SEM iterations.  The list of “dense” 

sub-clusters is: { }.,,, 21 rCSCSCSCS K= , where r is the previous length of the CS list plus k2.  The 

elements of CS are the sufficient statistics summarizing the corresponding dense sub-clusters. 

The third portion of this compression phase consists of merging the elements of CS via hierarchical 

agglomerative clustering [DH73].  A given CS i is merged (see Equation 6) with CS j if their means are 

nearest (measured by Euclidean distance) and the resulting merged cluster satisfies the density criterion.  

Note that all operations here are over clustered representation of the buffer, hence the number of items 

being manipulated is relatively small. 

3.4 Scalable EM Algorithm 

Bringing all defined notions together, the SEM algorithm proceeds as follows: 

0. Given initial mixture model parameter values and a fixed maximum memory buffer size, set SEM 

major iteration counter h = 0, initialize Gaussian mixture model parameter values W0
l , µ0,l,Σ0,l, l = 

1,…,k.  Initialize sets DS0, CS0 and RS0 to be empty.  Set N0 = 0 (total number of records processed).   

1. Fill the buffer by loading data rocords into the set RS. Set N h+1 = N h + (# of records loaded). 

2. Apply ExEM to RS initialized with Wh
l , µh,l,Σh,l, l = 1,…,k.  producing Wh+1

l , µh+1,l,Σh+1,l, l = 1,…,k.   

3. Perform primary compression:  

For l = 1,…k: 

(i) Denote set of data to be compressed near mean of Gaussian l as 
l,1h

DS
+

. 

(ii) Merge with previously compressed data: 


=
++ lll ,h,1h,1h DS,DSmergeDS . 

Set DSh+1 = { DS h+1,1,DS h+1,2,…,DS h+1,k}. 

4. Perform secondary compression: 

(i) Determine k1 candidate sub-clusters. 

(ii) Remove sub-clusters not satisfying (Equation 8). 

(iii) Merge remaining sub-clusters with current CSh elements while (Equation 8) satisfied. 

(iv) Set CSh+1 to resulting list of sufficient statistics. 
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5. Apply stopping criteria.  If one full scan of the database is complete, terminate.  Else if   

.ÊÊ 1hh ε≤− + , stop.  Otherwise, set h = h+1, go to 1.   hÊ  is the average log likelihood of the 

current mixture model over data processed so far: 

( )( )
( ) 






















+= ∑∑

∪∈∈ DSCSn,,

h
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h
h

h

n

1
loglog

N

1
Ê

Γθ

θPrPr
x
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The scheme presented so far involves updating a single mixture model over a database.  However the data 

compression/summarization machinery also admits the possibility of updating multiple mixture models 

simultaneously, during the one database scan.  We describe this generalization next. 

We comment here on experimental parameter settings. In our experiments, parameters were set to 

constant values and were not adjusted: ExEM stopping tolerance ε = 0.001 (same as classic EM); 

parameter p (fraction of  data compressed during primary phase) = 0.5; and “density criterion” β set to 

was set to 0.5.  Parameters p and β were varied in experiments evaluating mixture model quality for 

various values of these quantities. 

4 Generalization to Multiple Models 

EM, like many other iterative clustering algorithms, is known to be sensitive to initial parameter values 

[FRB98, BF98, MH98]. EM computes a local solution to the problem of maximizing the likelihood of the 

database given the model.  Since this is a local optimization procedure, the quality of the local solution is 

dependent upon the initial parameter values.  Standard practice usually calls for running EM from many 

different (possibly randomly) initial parameter values and choosing the mixture model solution with best 

quality (quality is usually dependent upon the particular task at hand, but generally measured by log 

likelihood – Equation 4).  For databases of modest size, this test/evaluate procedure is acceptable (though 

expensive). To support standard practice, SEM can naturally be generalized to explore multiple mixture 

models simultaneously. However, how are we to treat the DS, CS, and models themselves when other 

models are present? The key insights for this generalization are: 

1. Singleton data records in the set RS and sufficient statistics in CS may be shared between models.  

This is straightforward for the data records in RS as singleton data would be used to update the 

models independently.  The sufficient statistics in CS may be shared because they are constructed 

independently of any particular model.  Each CS element represents a set of dense data records. 

However, we need to insure that elements of CS are “far” from all modes of all models. The updates 

over CS remain the same for any model (see ExEM, Section 3.2, step 1.2).   

2. Each model will have its own set summarizing primary compression near its cluster modes.  Denote 

this set of sufficient statistics for model Mi as DSMi.   



Scaling EM Clustering  to Large Databases  Bradley, Fayyad, and Reina 

11 

3. When updating the mixture model parameters for model Mi , the sufficient statistics in the sets DSMg 

for g ≠ i are viewed as elements of the set CS  (i.e. to model Mi, the sufficient statistics of data 

compressed near the means of other models can be viewed simply as dense regions not necessarily 

near the means of model Mi: the exact semantics of the set CS). 

The architecture of SEM (Section 3.4) basically remains the same.  Assume now that SEM is initialized 

with ν initial sets of model parameters.  Step 2 must be modified slightly.  First, we add an outer loop to 

update model i = 1,…,ν.  Second, prior to calling ExEM to update the mixture model parameters for 

model Mi, the updates over the shared set CS must be augmented with the DS from all models other than 

Mi. Hence, the CS update for Mi  is over the compressed sets:  

.DSDSDSDSCS M)1i(M)1i(M1M ν+− ∪∪∪∪∪∪ KK  

There is one more generalization worthy of discussion: the primary data compression stage. When 

multiple models are present, it is possible that a given data record x may satisfy the criteria for primary 

data compression near means of separate clusters in different mixture models.  Suppose x satisfies the 

primary compression criteria for cluster l in mixture model iM , and also satisfies the criteria for cluster 

l
~

in mixture model gM
~

.  Data point x will get compressed with population l in mixture model iM if: 

)|
~

()|( gM
~Mi xx ll PrPr >  and will get compressed with population l

~
in mixture model gM

~
otherwise.  

Here PrMi( l | x ) is computed as in Equation 3 using the parameters of model Mi .  Hence x gets 

summarized with points nearest the means to which it has highest probability of  membership.   

By naturally exploiting the summary/compression scheme of the scalable EM algorithm, this approach is 

able to update multiple mixture models simultaneously over a large database in one scan. This fact allows 

us to explore multiple solutions simultaneously. Since the multiple models “interact” via the shared CS 

set and the updates over the DS sets of other models, we actually observe a synergy between the multiple 

simultaneous solutions. We have observed that the scalable architecture run with multiple models 

typically converges to better local minima than if run independently and sequentially. This is explained by 

the fact that the models are acting as guards against local minima for each other. Say one model diverges 

from a good solution and one of its clusters lands on a bad point (happens frequently in EM), then other 

models, acting as CS components from the first model’s perspective, will tend to pull it away from that 

bad point. Overall, the search becomes less sensitive to local shallow minima. Of course deep local 

minima are much harder to recover from, but that problem will never go away as it is a fundamental 

problem in optimization theory and practice. 
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5 Empirical Evaluation 

This paper targets scaling the EM algorithm and comparing performance with available alternatives. We 

do not address the issue of choosing initial models parameters (see [BF98,FRB98,MH98]) nor do we 

address the issue of setting the number of clusters k (an open research problem, e.g. [CS96,S96]). The 

goal is to study scalability properties and performance for a given k and set of initial conditions. 

Comparing against alternatives is based on quality of obtained solutions. It is an established fact in the 

statistical literature [PE96,GMPS97,CS96] that EM modeling results in better quality models than other 

simpler alternatives like k-Means (upon which algorithms like BIRCH [ZRL97] and CLARANS [NH94]). 

There is no prior work on scaling EM so we compare against de facto standard practices for dealing with 

large databases: sampling-based and on-line algorithms. Other scalable clustering algorithms exist, but do 

not produce mixture model representations of the database probability density function (e.g. BIRCH, 

DBSCAN [SEKX98], CLARANS, CURE [GRS98], etc.) Three techniques estimating mixture model 

parameters over large databases are evaluated: scalable EM (SEM), standard or “vanilla” EM run over 

random samples of the database (VEM), and an online EM implementation (OEM) [NH99, DM92]. The 

online EM algorithm is a stochastic gradient descent approach that operates by updating the initial 

mixture model one record at a time [DM92].  A single record is read and its membership probabilities in 

each of the k clusters is computed.  The cluster parameters are then updated and the record is purged from 

memory. 

SEM has three major parameters: primary compression factor p (Section 3.3.1), standard tolerance β  

(Section 3.3.2), and number of secondary clusters k’ (Section 3.3.2). Throughout all experiments we set 

these parameters to constant values: p = 0.5, β = 0.5(maximum global data variance), k’ = 2k. We study 

the sensitivity to these parameters in Section 5.2 where we explicitly vary them. 

5.1 Synthetic Data 

In clustering, it is difficult to judge the quality of a produced solution as the true solution is unknown. 

Hence studying the algorithm on synthetically generated data is important to verify correctness and to 

understand the effect of parameters, etc. Synthetic databases were generated by sampling from k = 10 

multivariate Gaussian distributions.  Gaussian means were chosen uniformly on [0.0, 10.0] and diagonal 

covariance matrices were chosen uniformly on [0.8, 1.2].  It is expected for a large number of attributes, 

the clusters are fairly separated.  For all tests initial mixture model parameters were chosen randomly.  

Each attribute is normalized to have global mean zero and global standard deviation equal to one to 

simplify analysis.  
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5.1.1 Scalability 

The running time of SEM is compared with VEM without sampling.  All databases in this evaluation had  

d = 25 attributes and had 10k, 400k, 600k and 1M records.  SEM was run with maximum buffer size = 

5% total database size. SEM and VEM each updated 10 mixture models simultaneously.  VEM was not 

constrained to a single database scan, nor to a limited RAM requirement.  Tests were run on a P400 

Pentium workstation with 128 MB RAM.  Results are summarized in Figure 5.1.   

Application of VEM to the database with 1M (1000k) records could not be completed on the system 

described above and was run on a P300 PentiumII workstation with 256 MB RAM.  We note that for 

databases with 25 continuous attributes, the system RAM limit of 128 MB is reached at 640k records, 

ignoring any other RAM requirements.  Paging was observed for VEM over the databases with 600k and 

1000k records.  As expected, SEM scales linearly.  

However, note that SEM is running faster than the full in-memory VEM algorithm for databases 

that fit in memory: 10k and 400k records. We expect the scalable implementation to run slightly slower 

in this range.  The explanation has two parts. First, we have observed empirically that EM typically tends 

to iterate fewer times with less data. Second, our approach has a localized memory access pattern, and 

hence allows the operating system to utilize faster CPU caches. Pentium II processors have on-chip 

memory caches, and we suspect we are optimizing their use. The traditional VEM implementation does 

an in-memory scan of the full data at each iteration, hence the likelihood of a cache fault is high. 

5.1.2 Cluster Quality 

Cluster quality is quantified by the log likelihood of the data under the computed mixture model 

(Equation 4).  This measure quantifies the likelihood that the database records were generated by the 

computed mixture model [B95].    It was empirically determined that SEM running time was 5 times 
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Figure 5.6: Quality versus standard tolerance. 

VEM running time over buffer sizes/sample percentages of 5% and 10%.  Hence, VEM is allowed to 

explore 5 times the number of SEM models for these percentages.  SEM running time was 10 times VEM 

and OEM time over buffer/samples of 1%, 0.5% and 0.1% and these algorithms explore 10 times the 

number of SEM models for these values.  

Number of Database Attributes and Clusters 

Figure 5.2 summarizes results comparing quality of mixture models computed by SEM, VEM and OEM 

for databases with 50k records and varying number attributes. Cluster quality degrades linearly for 

mixture models computed by SEM (with buffer size equivalent to 1% of the database), VEM (running 

over 1% random samples) and OEM.  The degradation for SEM is most graceful. Detailed results are 

shown in Figures 5.3 and 5.4 where we compare the distance between true Gaussian means and computed 

solutions. Note the graphs show ratios of distances relative to best solution, so differences are very 

significant. Number of clusters for these figures changed from 5 clusters at 20k records, to 10 clusters at 

50k records. Similar results are observed for 100 clusters at 100k records, in 100 dimensions. 

5.2 Parameter Sensitivity 

Varying Primary Compression Factor (see Section 3.3.1): Evaluations of cluster quality for various 

values of the primary compression factor p were conducted over a synthetic database with 50k records 

and 50 dimensions.  See Figure 5.5.  Secondary compression was not used by SEM in these tests.  For 

small values of p (near 0.0), there is little or no compression, the memory buffer fills and SEM terminates 
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Figure 5.7: Quality versus k [Reuters] 

prior to processing the entire database, hence poor mixture models are obtained.  For large values of p 

(near 1.0), almost all of the data is compressed in the primary phase and data resolution is lost; poor 

mixture models are also obtained.  Optimal values for p occur between these two extremes. The curve 

exhibits reasonable robustness away from extrema.   

Varying Standard Tolerance β  (see Section 3.3.2): Evaluations of cluster quality for various values of 

β were conducted.  The primary compression factor p was set to 0.5 (default), the maximum buffer size 

was 100kB.  We allowed SEM to construct large candidate secondary sub-clusters to better study the 

effects of β.  Figure 5.6 shows that cluster quality remains high for values of β  to 0.8.  For small values 

of β (near 0.0), secondary compression is minimal and hence there is no loss of data resolution. As β is 

increased, secondary compression plays a larger role.  For values of β in [0.2,0.6], when compression 

does occur, the sub-clusters are “tight” and data resolution is preserved, hence quality solutions are 

obtained.  For large values of β, data resolution is lost and the mixture model quality suffers, as expected. 

5.3 Real World Data 

SEM parameter settings were set to their defaults.  Initial mixture model values were chosen randomly. 

The sampling rate varied from 1% to 10% for smaller data sets, and were varied from 0.1% to 1% for 

larger data sets (to keep buffer sizes small as we move to large databases).  

Reuters Information Retrieval Database: The Reuters text classification database is derived from the 

original Reuters-21578 corpus (see www.research.att.com/~lewis/reuters21578/README.txt).  It consists of 12,902 

news articles. Our data subset consists of word count vectors for the most popular 302 keywords for each 

of the 12,902 documents.  The database was globally normalized and mixture models with k = 10 

Gaussians were computed.  Results are summarized in the following table showing the difference in log 

likelihood from the best solution. The results are averaged over 10 models for SEM and 50 models for 

VEM (10% and 5%) and 100 models for OEM and VEM (1%) are shown in Table 5.1. 

The models computed via SEM for all buffer sizes/sample percentages are superior. 

Figure 5.7 summarizes results of applying SEM and VEM with 10% buffer size/sample percentage for 

various values of k.  Notice that SEM exploits the 

added freedom of more clusters and computes 

improved models as k increases.  VEM has great 

Table 5.1: Delta Log Likelihoods for Reuters 

 Buffer size as percent of DB size 
Method 10% 5% 1% 
SEM 0 -51.8 -228.8 
VEM -63.9x104 -114.8 x104 -1568.9 x104 
OEM -408.4 
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difficulty improving solutions as k grows.  

Census Database: The U.S. Bureau Census “adult” is publicly available from U.C. Irvine repository, but 

a larger version was obtained from SGI’s public archive on data mining. The subset used here consists of 

299,285 records each having 11 numeric attributes. Results are summarized in the following table, again 

these are differences in log likelihood to best model: 

Scalable EM (SEM) Sampling EM (VEM) OEM  
5% 1% 0.5% 0.1% 5% 1% 0.5% 0.1% 100% 
-0.0178 0 -1.8706 -3.0047 -8.119 -14204.2 -1486.35 -85241.8 -33.6861 

For all tests SEM produced better mixture models than either VEM or OEM.  Given enough memory, 

VEM will generate the best model by definition. But if the memory budget for is severely constrained, 

SEM computes superior models over either VEM or OEM on the Census database. 

Astronomy Database: The Astronomy database consists of measurements of sky objects from the 

Second Palomar Sky Survey at Caltech.  Number of records is 648,291, each representing objects on a 

photographic plate having 29 numeric attributes.  Results are summarized in the following table. 

Scalable EM (SEM) Sampling EM (VEM) OEM  
1% 0.5% 0.1% 1% 0.5% 0.1% 100% 
-197.826 -86.737 0 -216.901 -225.36 -892.29 43.490 

Note that in this case OEM performed the best. This is a bit surprising. In fact it does better than running 

VEM with even larger samples (e.g. 10% or more). We have no good explanation at this time. However, 

note that SEM significantly outperformed VEM, consistent with our expectation. 

REV Digits Recognition Database: The REV Digits database consists of 13,711 data items with 64 

attributes.  Due to small number of records, we used larger buffer sizes. Each record represents the gray-

scale level of an 8 by 8 image of a handwritten digit.  Each attribute has been globally normalized to have 

mean zero and standard deviation one. Mixture models with k = 10 Gaussian components were computed.  

On this data set, we observe comparable performance between SEM and VEM at the 5% and 10% sample 

levels. OEM did significantly worse (by a factor of 1.3). VEM at 1% level deteriorated to OEM’s 

performance while SEM remained at same original level. In this data set we believe all clustering 

methods are computing poor models (hence similar quality). It was reassuring that SEM remained stable 

as buffer size/sample percentage was decreased.  

6 Related Work 

The closest approach to this work is proposed in [NH99] in which incremental versions of the general EM 

algorithm are analyzed. In this case the E-Step consists not only of updating the distribution over the 

unobserved variables, but also updating the sufficient statistics given this distribution.  Its operation is 

similar to OEM except that sufficient statistics are kept with each cluster. Our method introduces the 

notion of secondary compression and the CS set. Furthermore, our framework is specifically designed to 
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operate over a single scan of the database.  In contrast, the results of [NH99] indicate that multiple scans 

of the database are required.  

The BIRCH algorithm [ZRL97] first summarizes the database in a main memory, balanced tree structure, 

the CF-tree.  The resolution of the data summarization is determined by the amount of main memory 

allocated to this structure.  The nodes of the CF-tree compress the data as spherical Gaussian distributions 

with a single scalar variance. In contrast, SEM admits covariance matrices. BIRCH also takes a second 

pass to cluster the compressed representation once the first pass terminates. The fundamental difference 

between BIRCH and the scalable EM algorithm lies in the approach to data compression. BIRCH 

compresses data as a step independent of the clustering algorithm whereas the scalable EM algorithm’s 

compression is closely related to the current fit of the mixture model to the data. In addition, SEM can 

accommodate probabilistic cluster membership weights. BIRCH is designed to support the k-Means 

algorithm and not the probabilistic EM algorithm. However, the CF-tree structure can be used to do non-

parametric (kernel-based) density estimation with a large number of kernels [LRZ96]. 

A set of related clustering algorithms, which for the same reasons cannot be compared with our density 

estimation approach, are DBSCAN, GDBSCAN [SEKX98], and CLARANS [NH94] which are designed 

primarily for spatial data clustering. DBSCAN and GDBSCAN are region growing algorithms and do not 

aim to probabilistically model the density.  The same applies to the CLIQUE algorithm [AGGR98] which 

grows dense data regions by attempting to find all clustered subspaces of the original data space and 

present the result to the user in a minimal DNF expression. CLIQUE requires many data scans to 

identifying cluster subspaces in the bottom-up fashion.  It does not naturally extend itself to a 

probabilistic interpretation.  In fact the authors state that a data mining algorithm “… should not presume 

some canonical form for data distribution.” 

The CURE algorithm [GRS98] is a scalable clustering technique based upon the hierarchical 

agglomerative clustering (HAC) approach.  Initially each data record is considered a cluster and the two 

nearest clusters are merged.  The difference between CURE and standard HAC is that clusters are 

represented by a given number of "well-scattered" records within each cluster.  This set of points, 

determined in the merging procedure are "shrunk" toward the cluster mean by a multiplier α in [0,1].  The 

authors state that the shrinking process reduces the effect of outliers.   It is also stated that representing the 

cluster by a set of "well-scattered" points allows CURE to recognize non-spherical clusters.  The CURE 

algorithm is scaled via random sampling and the authors present a theoretical result stating the sufficient 

sample size so that a given number of points from each cluster appear in the random sample.  The 

algorithm is also scaled by employing a pre-clustering phase and applying CURE to the result.  This is 

conceptually similar to the technique employed by BIRCH [ZRL97]. 

In addition to differences between hierarchical and mixture model approaches [DH73], the fundamental 

difference between CURE and scalable EM are threefold: (i)  data compression to achieve scalability is 
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done independent of the clustering algorithm, there is no notion of fit of the clustering solution to the 

database, (ii) the approach is not naturally extended to multiple model updates, and (iii) the representation 

of a cluster as a group of “well-separated” records does not readily give rise to a probabilistic model or 

notion of density estimation. 

7 Conclusion 

The algorithm presented effectively scales to very large databases.  Required memory consists of holding 

a small sub-sample in RAM. All clustering (primary and secondary) occurs over the contents of the 

buffer. The approach can be run with a small RAM buffer and can effectively be applied to large-scale 

databases.  We have observed that running multiple solutions typically results in improved performance 

of the compression schemes since the synergy between the models being explored allow for added 

opportunity for compression. In turn this frees up more space in the buffer and allows the algorithm to 

maximize its exposure to new data during model updates. The results indicate that the proposed scalable 

scheme produces good solutions and outperforms simple sampling approaches. Simultaneous multiple 

model updating decreases the likelihood of converging in a bad local minima with empty clusters. The 

retained data vectors/compressed clusters do indeed lead to much better solutions when compared with a 

memoryless OEM. This demonstrates memory in addition to the model itself is essential. 

Results on real-world data support the utility of SEM in real clustering/data modeling applications.  SEM 

is particularly suited to modeling databases with many attributes when memory requirements are severe – 

results on the Reuters corpus (302 attributes) and the REV Digits database (64 attributes) show SEM to be 

superior on this situation. When applied to databases with a large number of records with a severely 

constrained memory budget, SEM produces superior models to VEM (Census and Astronomy).   

From a DBMS perspective the scheme presented possesses many desirable properties. It satisfies the 

goals of one scan or less, forward-only cursor to data for efficient operation over join views, incremental 

behavior, and anytime algorithm properties. The scheme can be viewed as a generalized version of a 

sampling-based scheme. Terminating after one buffer fill, SEM is VEM over random samples. By 

allowing the buffer hold all data in memory, we simulate in-memory VEM. However, our experiments 

indicate that even if huge main memory was available on the server, it would not be desirable to increase 

the buffer. The smaller data buffers cause the algorithm to exhibit an improved cache behavior due to 

localized data access in the inner loop. This leads to faster execution time since the number of accesses to 

main memory are minimized. Most modern PC CPU’s have on-chip memory caches. 

Fortunately, the scalable framework decouples data and model. In order to update the model, degree of 

membership of each data point in the buffer to each cluster is the only requirement. Hence this scheme 
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accommodates clustering over discrete data by choosing an appropriate data distribution (e.g. the 

Multinomial distribution).  We are currently investigating using this framework on mixed attribute types. 
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