
Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

0

Scaling EM (Expectation-Maximization) Clustering to Large
Databases

Paul S. Bradley Usama M. Fayyad Cory A. Reina

Microsoft Research

November 1998
Revised February 1999

Technical Report

MSR-TR-98-35

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

1

Scaling EM (Expectation-Maximization) Clustering to Large
Databases

 P. S. Bradley Usama Fayyad Cory Reina

 bradley@microsoft.com fayyad@microsoft.com coryr@microsoft.com

Microsoft Research

Redmond, WA 98052, USA

Abstract:

Practical statistical data clustering algorithms require multiple data scans to converge. For
large databases, these scans become prohibitively expensive. We present a scalable
clustering framework requiring at most one scan of the database, and apply it to the
Expectation-Maximization (EM) algorithm. Unlike distance-based or hard membership
algorithms (such as k-Means) EM is known to be an appropriate optimization algorithm for
constructing proper statistical models of the data. It also easily accommodates categorical
and continuous data fields. It admits varying degrees of data membership in multiple
clusters. Our scalable method is based on identifying regions of the data that are
compressible and regions that must be maintained in memory. The approach operates
within the confines of a limited memory buffer. Data resolution is preserved to the extent
possible based upon the size of the memory buffer and the fit of the current clustering
model to the data. We extend the framework to update multiple clustering models
simultaneously. Computational tests indicate that this scalable scheme outperforms
sampling-based and incremental approaches -- the straightforward alternatives to ’scaling’
existing traditional in-memory implementations to large databases.

Keywords: Clustering, Probabilistic modeling, Density estimation, scalable mining, EM

algorithm, iterative refinement, clustering large databases.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

1

1 Introduction

Data clustering is important in many fields, including data mining [FPSU96], statistical data analysis

[KR89,BR93], compression [ZRL97], and vector quantization. Applications include data analysis and

modeling [FDW97,FHS96], image segmentation, marketing, fraud detection, predictive modeling, data

summarization, and general data reporting tasks [B*96]. It has important applications in data cleaning and

exploratory data analysis. Clustering is a crucial data mining step and performing the task over massive

databases is essential. Previous scalable clustering work has focused on k-Means-type approaches

[ZRL97,BFR98] and region growing [NH94, SEKX98, AGGR98]. These techniques, while effective, do

not derive statistical models of the data (i.e. they are based on notions of distance metrics, etc.) and they

do not allow for cluster overlap (i.e. a data record may belong to different clusters with different

membership probabilities). In this paper, we focus on the task of scaling the most effective technique

available for proper probabilistic clustering: the Expectation-Maximization (EM) algorithm [DLR77,

CS96]. EM has additional desirable properties in that it does not require the specification of distance

measures and readily admits categorical and continuous attributes (which is untrue of other clustering

algorithms that either operate on continuous, e.g. k-Means-type algorithms, or categorical [GKR98] data

exclusively). EM has been shown to be superior to other alternatives for statistical modeling purposes

[GMPS97,PE96,B95,CS96,NH99].

The clustering problem has been formulated in various ways in the statistics [KR89,BR93,B95,S92,S86],

pattern recognition [DH73,F90], optimization [BMS97,SI84], and machine learning literature [F87]. The

fundamental problem is that of grouping together (clustering) data items that are similar to each other.

The most general view places clustering in the framework of density estimation [S86, S92, BR93]. Data

is generally not uniformly distributed. Some combinations of attribute values are more likely than others.

Clustering can be viewed as identifying the dense regions of the probability density of the data source. An

effective representation of the probability density function is the mixture model: a model consisting of

several components (e.g. a model consisting of the sum of 3 Gaussians). Each component generates a set

of data records (a “cluster”). The data set is then a mixture of clusters and the problem is to identify the

data points constituting a cluster and inferring the properties of the distribution governing each cluster.

Consider a simple example with data consisting of 2 attributes: age and income. One may choose to

model the data as a single cluster and report that the data records have an average age of 41 years and an

average income of $26K/year (with associated variances). However, this is rather deceptive and

uninformative. The data may be a mixture of working people, retired people, and children. A more

informative summary is to identify these subsets or clusters, and report the cluster parameters. Results

may now be: 20% of the data have average age 12 and zero income, 45% have average age 38 and

average income $45K, and 30% have average age 72 and average income $20K, while 5% of data had

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

2

unknown incomes and ages. Assuming we have no apriori definition of the various sub-populations, how

do we discover what they are? Furthermore, how do we do this if the data has many more dimensions and

the various partitions are not obvious? This is where clustering plays an important role in identifying

these dense regions in multidimensional data.

Density estimation via the mixture model framework can be seen as a generalization of the clustering

problem [BB95, B95]. The EM (Expectation-Maximization) algorithm [DLR77, CS96] is an effective,

popular technique for estimating mixture model parameters (cluster parameters and their mixture

weights). The EM algorithm iteratively refines initial mixture model parameter estimates to better fit the

data and terminates at a locally optimal solution.

Other similar iterative refinement clustering methods include the popular k-Means-type algorithms

[M67,DH73,F90,BMS97,SI84]. While these approaches have received attention in the database and data

mining literature [NH94,ZRL97,BFR98], they are limited in their ability to model data from a statistical

perspective. The k-Means algorithm attempts to minimize the sum of squares of Euclidean distances

between data records in a cluster and the cluster’s mean vector. This assignment criterion implicitly

assumes that all clusters are represented by identical spherical Gaussian distributions located at different

means [BB95, B95]. In addition, since the k-Means algorithm is married to the Euclidean metric, it does

not generalize to the problem of clustering discrete or categorical data. The k-Means algorithm also

assumes each data record belongs to exactly one cluster. In reality, a data record may belong to multiple

clusters with different probabilities of membership. The mixture model framework is more general and

relaxes all these assumptions. In addition, one may choose a probability distribution over categorical

attributes (e.g. the Multinomial distribution) and naturally cluster this data type.

Goals of this Work: We focus on scaling EM to compute mixture model parameter values over large

databases. For large databases, hundreds of iterations or more may be required during iterative refinement

clustering. Although guaranteed to converge finitely, a general bound on the number of iterations required

for EM is not available. We assume a single database scan is expensive, thus computing a mixture model

over large databases via standard EM would not be acceptable. We present a scalable version of the EM

algorithm that satisfies the following Data Mining Desiderata:

1. One scan: The algorithm requires at most one database scan with early termination highly desirable.

2. Anytime algorithm: The algorithm is always able to provide a “best” answer at anytime during its

computation (i.e. it exhibits “online, anytime” behavior).

3. Interruptible and Incremental: The algorithm is suspendable, stoppable and resumable.

Incremental progress can be saved for continued computation later, possibly on new data.

4. Limited RAM Requirement: The algorithm works within the confines of a limited memory (RAM)

buffer, allocated by the user, insuring good behavior when run as a server process.

5. Forward-only cursor: The algorithm has the ability to operate with a forward-only cursor over a

view of the database.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

3

A forward only-cursor respects the fact that the individual data records provided to the clustering

algorithm may be the result of an expensive join query over a potentially distributed data warehouse.

Hence a second scan may cause a second expensive join and should be avoided if possible.

Contributions of this Paper: A scalable EM algorithm is introduced that satisfies the goals stated above.

The problem of computing a mixture model is decomposed so that it is possible to cluster arbitrarily large

databases while utilizing small amounts of memory. The fundamental observation is that all data is not of

equal importance when computing the mixture model. Data records can be classified into one of three

categories: records that can be safely discarded, records that may be compressed, and records that need to

be retained in memory. We demonstrate that the scalable EM algorithm (SEM) indeed preserves

clustering fidelity and that it outperforms traditional ways for coping with large databases involving data

sampling. The framework we present can accommodate many iterative refinement type algorithms

including k-Means [BFR98], and also supports clustering over data with mixed continuous-discrete

attributes. The localized data access properties of SEM have additional benefits relating to improved

utilization of fast caches and on-chip memory caches in modern CPU’s. This results in faster execution

times even on machines that have enough resident memory to load the entire database.

2 Preliminaries

While the framework we present is general, we focus on its application to distributions that are mixtures

of multivariate Gaussians. This choice is motivated by a result from density estimation theory stating that

any distribution can be effectively approximated by a mixture of Gaussians [S92,S86]. Each population

(cluster) is modeled by a d-dimensional Gaussian probability distribution. The multi-dimensional

Gaussian distribution for cluster l, l =1,…,k, is parameterized by the d-dimensional mean vector µl and

d×d covariance matrix Σl : .
1T

2

1
exp

d)2(

1
|

 −
−

 −
π

= lll

l
l µΣµ

Σ
xxx)(Pr (1)

x and µl are column vectors, the superscript T indicates transpose to a row vector, | Σl | is the determinant

of Σl and (Σl) –1 is its matrix inverse. The mixture model probability density function is:

∑
=

=
k

W
1

.)|(Pr)(Pr
l

l
lxx (2)

The coefficients Wl (mixture weights) represent the fraction of the database represented by the

corresponding cluster. A given data record x is a member of each of the k clusters with different

probabilities of membership. Probability in population l is given by: .
|W

|
)(Pr

)(Pr
)(Pr

x

x
x

lll = (3)

EM computes locally optimal maximum likelihood model parameter values [DLR77, CS96].

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

4

2.1 Classic (Vanilla) EM Algorithm

The classic or “vanilla” EM algorithm requires initial mixture model parameter estimates as input. Given

mixture model parameters, a single EM iteration provides new parameter estimates which are proven not

to decrease the log likelihood of the model [DLR77,B95]. The process is repeated until the log likelihood

of the mixture model at the previous iteration is sufficiently close to the log likelihood of the current

model. The algorithm proceeds as follows for our Gaussian mixture model:

0. Given initial mixture model parameter values: initialize the mixture model parameters, set

current iteration j = 0: Wl
0, µ 0,l and Σ 0,l, l = 1,…,k.

1. Having mixture model parameters at iteration j, update them as follows:

For each database record D∈x :

Compute the membership probability of x in each cluster:

.k,,1,
|W

|
j

jj

Kl
l

l l ==
)(Pr

)(Pr
)(Pr

x

x
x

2. Update mixture model parameters: ∑
∈

+ =
D

1j |
N

1
W

x

x)(Pr l
l

,

)|(Pr

)|(Pr
,1

∑

∑

∈

∈+
⋅

=

D

Dj

x

x

x

xx

l

l
lµ

()()
,

)|(Pr

)|(Pr ,1,1

,

∑

∑

∈

∈

++ −−
=

D

D

Tjj

j

x

x

x

xxx

l

l ll

l

µµ
Σ .,,1 kKl =

3. If ε≤+1- jj EE , stop. Else set j = j+1 and go to 1. E j is the log likelihood of the mixture model at

iteration j: ()∑ ∑ ∑
∈ ∈ =

⋅==

D D

k
jjjj WE

x x

xx
1

)|(Prlog)(Prlog
l

l
l . (4)

3 Model Estimation over Large Databases

When clustering data, we implicitly assume that data records within the given database are not uniformly

distributed. By definition clustering assumes that there exist data regions that are more dense than other

regions. Our goal is to exploit this fact and design an algorithm that computes an approximate solution

(empirically, a very good solution) while operating within a limited memory (RAM) buffer in one scan or

less of the database. The basic scalable EM approach is summarized at a high level as follows:

0. Initialize the mixture model parameters to given values (set by user or at random).

1. (Fill Buffer). Obtain a sample from the database, filling the memory buffer.

2. (Update Mixture Model Parameters). Apply EM to update the mixture model parameters over the

data contents in the buffer (including previously collected summary statistics (step 3)) producing new

mixture model parameters (see Section 3.2).

3. (Identify Data to be Compressed). Given the updated mixture model, identify data regions that may

be summarized, tag data in the buffer lying in these regions (see Sections 3.3).

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

5

4. (Compress Data to Sufficient Statistics). Compute sufficient for data tagged in 3. Purge these data

records from buffer, retaining only their sufficient statistics (see Section 3.1).

5. (Stopping Criteria). If stopping criteria (see Section 3.4) are not satisfied return to step 1.

The basic intuition is to identify data subsets whose contribution to model updates can be effectively

summarized by their sufficient statistics. Instead of revisiting these records, updates are performed over

their sufficient statistics. Effectively, in the single pass over the database SEM gathers a collection of data

records and summaries (compressed versions of records). The contents of the limited memory buffer are

intended to be as representative as possible of the entire database. After each buffer refill, the mixture

model parameters are updated over the new sample of data records, the set of data records retained in the

buffer, and the compressed (summarized) representations of data discarded in past iterations.

Note that this scalable model estimation procedure satisfies the requirements set forth in the data mining

desiderata. Clearly the algorithm works within a limited memory buffer by definition and only utilizes a

forward-only cursor. The algorithm requires one scan (or less) of the database. Early stopping occurs

when the log likelihood of the model between successive iterations is stable. The algorithm is always able

to provide a “best” answer: the current mixture model parameters. It is suspendable, stoppable and

resumable by persisting the contents of the buffer and mixture model parameters to disk. Additional data

can easily be accommodated to update an existing model.

3.1 Data Summarization and Sufficient Statistics

We focus on step 4 of the algorithm in which a set of data has already been tagged to be compressed (this

process is described in Section 3.3), and the task at hand is to summarize it via sufficient statistics. Let S

be a record subset consisting of n vectors each having d attributes. The sufficient statistics for this set are

(θ, Γ, n), where θ and Γ are a vector and matrix sum, respectively: ∑
∈

=
Sx

x and ∑
∈

=Γ
Sx

Txx . Note Γ is

symmetric, there is no need to store the entire matrix. For diagonal Gaussians, Γ storage collapses to that

of a vector. Our SEM implementation assumes diagonal covariance matrices. For d-dimensional data, the

simplified EM model has k(2d+1) parameters to estimate: the k means, the k covariance matrix diagonals,

and the vector of cluster weights. From (θ, Γ, n), the mean over S (denoted here µS) and the covariance

matrix over S (denoted as ΣS) are computed as follows: ,
1 ⋅=
n

S

 −= TS

nn

11
 (5)

Thus the sufficient statistics (θ, Γ, n) naturally update the mixture model parameters over S. Another

useful operation we define is merging two sets of sufficient statistics:

() () ()212121222111 ,,,,,,, nnnnmerge +Γ+Γ+=ΓΓ θθθθ . (6)

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

6

3.2 Model Update over Singleton Data Records + Sufficient Statistics

Step 2 of the scalable EM algorithm requires updating the mixture model parameters over the contents of

the buffer, consisting of singleton data records and sets of sufficient statistics described above. The

Extended EM (ExEM) Algorithm performs this operation. ExEM updates the model parameters exactly as

the classic EM algorithm (Section 2.1) over singleton data records. Updates over sufficient statistics treat

the set represented by (θ, Γ, n) as a single data record weighted by n. ExEM proceeds as follows:

0. Given the set S of singleton data records, a set T of sufficient statistics and initial mixture model

parameters: initialize the mixture model parameters, set iteration counter j = 0: W0
l , µ0,l,Σ0,l, l =

1,…,k.

1. Having mixture model parameter values at iteration j, update them as follows:

1.1. (E-Step, Singleton Records): For singleton records S∈x compute:
)(Pr

)|(Pr
)|(Pr

x

x
x

j

jjW l
ll = .

1.2. (E-Step, Sufficient Statistics) compute probability that the subset of data points summarized by

each (θ, Γ, n) belong to population l: .,...,1,
1

Pr

1
Pr

)|(Pr),,(k

n
j

n
jjW

n ==

l

l
l

l

2. (Extended M-step): Set: ()
()

,,,1,),,|(Pr)|(Pr)(
,,

knN
TnS

Kllll =+= ∑∑
∈∈x

x ∑
=

=
k

1

)(NN
l

l .

The value of N(l) is the total portion of the database processed so far having membership in

population l. The Gaussian parameters are updated as follows: ,
N

)(N
W 1j l

l
=+

() ()()
()

,,,|Pr|Pr
)(

1

,,

,

⋅+⋅= ∑∑

∈∈ TnS

new n
N

xx ll
l

l

x

µ

() ()()
()

−

Γ⋅Γ+⋅= ∑∑

∈Γ∈ TnS

Tnew n
N ,,

, ,,|Pr|Pr
)(

1

θ
θll

l
l

x

xxxΣ

 () () ()()
()

.,1,,,|Pr|Pr|Pr
)(

1

,,

kn
N Tn

T

T

SS

Kllll
l

=

Γ⋅+

⋅

⋅ ∑∑∑

∈Γ∈∈ θ
θθθ

xx

xxxx

3. (Stopping Criteria) Stop if ε≤− +1jj EE , stop. Otherwise set j = j+1, go to 1. jE is the log

likelihood of the mixture model at iteration j over the contents of the buffer:

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

7

()
()

+= ∑∑

∈Γ∈ Tn

j

S

jj

n
nE

,,

1
Prlog)(Prlog

θ
θ

x

x . (7)

In addition to the generalization to work over sufficient statistics, ExEM also has the following

modification:

4. (Model Reset for Empty Clusters): Upon convergence (step 3), the ExEM algorithm employs a step

that performs a Gaussian distribution reset if one or more of the clusters has a sum total probability of

membership below a given threshold or if two Gaussians converge on the same parameters. This is a

problem that plagues both EM and k-Means algorithms in high dimensions. In this case, rather than

letting such clusters go “inactive”, The ExEM algorithm is re-run, with “inactive” clusters reseeded at

new points. Specifically, the Gaussian distribution for each “inactive” cluster Cl is reset to the mean

of a compressed subset which is least likely under the current mixture model:

()() () .Tn,,,
n

1~~logminarg 1j

~

∈⋅== + Γθθµµµ Prl The “argmin” notation means to choose the mean

of compressed subset which is least likely under the updated mixture model. It also inherits the

corresponding covariance matrix of the compressed subset chosen above. Return to step 1.

3.3 Data Compression and Summarization

Data summarization involves two phases. Primary data compression purges records that are unlikely to

change membership probabilities during future SEM iterations. These are the records near the modes of

the k cluster distributions. Data records compressed in the primary phase constitute the set of sufficient

statistics DS. Secondary data compression compresses dense regions of data which are not near the

Gaussian means. Data records compressed in the secondary phase form the set of sufficient statistics CS.

RS refers to the set of data records which remain in the buffer uncompressed (R is for “retained”).

Records obtained from the database are initially read into the RS structure.

3.3.1 Primary Data Compression

If the current mixture model is correct, then areas near the means, µ l , l = 1,…,k will have greatest

density. The full mixture model can be sufficiently updated over future samples via the sufficient

statistics of the set of data points near the modes. Essentially the current models are accurate

representatives of these points. Primary compression removes a proportion p of the data that is best

represented by the current model. This is achieved by purging records from RS that have greatest log

likelihoods. This is equivalent to finding a Mahalanobis radius [DH73] rl from the center of each cluster l

and purging the data items within that radius as illustrated in Figure 3.1 (shaded regions go to DSl). The

subset of data records that is summarized near the mean of Gaussian l is precisely:

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

8

Figure 3.2: Secondary data compression.

Figure 3.1: Primary data compression.

()() () .k,...,1,rRSDS
T1

=

 ≤−∈=

−
llllll µΣµ xxxx - , The parameter p defines the amount of data

compressed and determines rl. In Section 5.2 we show that the method is not overly sensitive to this

parameter. We set it to 0.5 throughout all experiments. This method guarantees a compression factor of p.

The set of sufficient statistics of all points compressed in the primary phase is DS={DS1,…,DS k}.

3.3.2 Secondary Data Compression

The motivation for secondary data compression is based on the observation that for a dense region of data

not near the means of the k population Gaussians (modes), the values of Pr(l | x) (Equation 3) will be

approximately the same for all data records x constituting the dense region. This can be shown as a

property of the Gaussians in tail regions of low probability. It follows then that the value of Pr(l | µ′)

will be a good approximation of this value, where µ′ is the mean of the dense subset of data records.

Hence the updates to the mixture parameters in the ExEM algorithm basically consist of representing such

a dense subset of data by its mean vector and covariance matrix. Compressing dense subsets of data not

near the k modes allows accurate update of the mixture parameters while freeing up buffer space for

future data. Figure 3.2 illustrates this basic idea. The task is to determine these dense subsets.

This compression phase has three parts. The first consists of locating candidate dense regions (sub-

clusters) over the data remaining in the buffer. The second consists of applying a criterion to each of the

candidate sub-clusters ensuring that they are sufficiently dense. The third part is a merging pass that

combines dense sub-clusters as long as they remain dense (as defined by previous criterion). The search

for candidate sub-clusters takes place over RS, post primary compression purging.

Candidate sub-clusters are determined by applying either the standard k-Means clustering algorithm

[F90,DH73] or “harsh” EM [NH99] to RS. The choice of these “hard” assignment clustering algorithms

is justified by the fact to fully compress data records into sufficient statistics, records must have full

membership in their representative sub-clusters. To increase the likelihood of identifying dense sub-

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

9

clusters, the number of candidate sub-clusters is set to k’> k. In our experiments we simply set kk 2’≈ .

The sub-clustering algorithm is initialized with k’ randomly selected data records from RS. Once the

secondary clustering algorithm has converged, we apply the “density criterion”. Subclusters having

elements of the covariance diagonal exceeding a parameter β > 0 are discarded. Hence the sufficient

statistics for the data in a given sub-cluster (θ, Γ, n) satisfies: βθΓ ≤

 −⋅

=

2
jjj

d,...,1j n

1

n

1
max (8)

Suppose k2 < k’ sub-clusters satisfy the density criterion. The sufficient statistics of these k2 sub-clusters

are appended to the list of the “dense” sub-clusters found in previous SEM iterations. The list of “dense”

sub-clusters is: { }.,,, 21 rCSCSCSCS K= , where r is the previous length of the CS list plus k2. The

elements of CS are the sufficient statistics summarizing the corresponding dense sub-clusters.

The third portion of this compression phase consists of merging the elements of CS via hierarchical

agglomerative clustering [DH73]. A given CS i is merged (see Equation 6) with CS j if their means are

nearest (measured by Euclidean distance) and the resulting merged cluster satisfies the density criterion.

Note that all operations here are over clustered representation of the buffer, hence the number of items

being manipulated is relatively small.

3.4 Scalable EM Algorithm

Bringing all defined notions together, the SEM algorithm proceeds as follows:

0. Given initial mixture model parameter values and a fixed maximum memory buffer size, set SEM

major iteration counter h = 0, initialize Gaussian mixture model parameter values W0
l , µ0,l,Σ0,l, l =

1,…,k. Initialize sets DS0, CS0 and RS0 to be empty. Set N0 = 0 (total number of records processed).

1. Fill the buffer by loading data rocords into the set RS. Set N h+1 = N h + (# of records loaded).

2. Apply ExEM to RS initialized with Wh
l , µh,l,Σh,l, l = 1,…,k. producing Wh+1

l , µh+1,l,Σh+1,l, l = 1,…,k.

3. Perform primary compression:

For l = 1,…k:

(i) Denote set of data to be compressed near mean of Gaussian l as
l,1h

DS
+

.

(ii) Merge with previously compressed data:

=
++ lll ,h,1h,1h DS,DSmergeDS .

Set DSh+1 = { DS h+1,1,DS h+1,2,…,DS h+1,k}.

4. Perform secondary compression:

(i) Determine k1 candidate sub-clusters.

(ii) Remove sub-clusters not satisfying (Equation 8).

(iii) Merge remaining sub-clusters with current CSh elements while (Equation 8) satisfied.

(iv) Set CSh+1 to resulting list of sufficient statistics.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

10

5. Apply stopping criteria. If one full scan of the database is complete, terminate. Else if

.ÊÊ 1hh ε≤− + , stop. Otherwise, set h = h+1, go to 1. hÊ is the average log likelihood of the

current mixture model over data processed so far:

()()
()

+= ∑∑

∪∈∈ DSCSn,,

h

RS

h
h

h

n

1
loglog

N

1
Ê

Γθ

θPrPr
x

x .

The scheme presented so far involves updating a single mixture model over a database. However the data

compression/summarization machinery also admits the possibility of updating multiple mixture models

simultaneously, during the one database scan. We describe this generalization next.

We comment here on experimental parameter settings. In our experiments, parameters were set to

constant values and were not adjusted: ExEM stopping tolerance ε = 0.001 (same as classic EM);

parameter p (fraction of data compressed during primary phase) = 0.5; and “density criterion” β set to

was set to 0.5. Parameters p and β were varied in experiments evaluating mixture model quality for

various values of these quantities.

4 Generalization to Multiple Models

EM, like many other iterative clustering algorithms, is known to be sensitive to initial parameter values

[FRB98, BF98, MH98]. EM computes a local solution to the problem of maximizing the likelihood of the

database given the model. Since this is a local optimization procedure, the quality of the local solution is

dependent upon the initial parameter values. Standard practice usually calls for running EM from many

different (possibly randomly) initial parameter values and choosing the mixture model solution with best

quality (quality is usually dependent upon the particular task at hand, but generally measured by log

likelihood – Equation 4). For databases of modest size, this test/evaluate procedure is acceptable (though

expensive). To support standard practice, SEM can naturally be generalized to explore multiple mixture

models simultaneously. However, how are we to treat the DS, CS, and models themselves when other

models are present? The key insights for this generalization are:

1. Singleton data records in the set RS and sufficient statistics in CS may be shared between models.

This is straightforward for the data records in RS as singleton data would be used to update the

models independently. The sufficient statistics in CS may be shared because they are constructed

independently of any particular model. Each CS element represents a set of dense data records.

However, we need to insure that elements of CS are “far” from all modes of all models. The updates

over CS remain the same for any model (see ExEM, Section 3.2, step 1.2).

2. Each model will have its own set summarizing primary compression near its cluster modes. Denote

this set of sufficient statistics for model Mi as DSMi.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

11

3. When updating the mixture model parameters for model Mi , the sufficient statistics in the sets DSMg

for g ≠ i are viewed as elements of the set CS (i.e. to model Mi, the sufficient statistics of data

compressed near the means of other models can be viewed simply as dense regions not necessarily

near the means of model Mi: the exact semantics of the set CS).

The architecture of SEM (Section 3.4) basically remains the same. Assume now that SEM is initialized

with ν initial sets of model parameters. Step 2 must be modified slightly. First, we add an outer loop to

update model i = 1,…,ν. Second, prior to calling ExEM to update the mixture model parameters for

model Mi, the updates over the shared set CS must be augmented with the DS from all models other than

Mi. Hence, the CS update for Mi is over the compressed sets:

.DSDSDSDSCS M)1i(M)1i(M1M ν+− ∪∪∪∪∪∪ KK

There is one more generalization worthy of discussion: the primary data compression stage. When

multiple models are present, it is possible that a given data record x may satisfy the criteria for primary

data compression near means of separate clusters in different mixture models. Suppose x satisfies the

primary compression criteria for cluster l in mixture model iM , and also satisfies the criteria for cluster

l
~

in mixture model gM
~

. Data point x will get compressed with population l in mixture model iM if:

)|
~

()|(gM
~Mi xx ll PrPr > and will get compressed with population l

~
in mixture model gM

~
otherwise.

Here PrMi(l | x) is computed as in Equation 3 using the parameters of model Mi . Hence x gets

summarized with points nearest the means to which it has highest probability of membership.

By naturally exploiting the summary/compression scheme of the scalable EM algorithm, this approach is

able to update multiple mixture models simultaneously over a large database in one scan. This fact allows

us to explore multiple solutions simultaneously. Since the multiple models “interact” via the shared CS

set and the updates over the DS sets of other models, we actually observe a synergy between the multiple

simultaneous solutions. We have observed that the scalable architecture run with multiple models

typically converges to better local minima than if run independently and sequentially. This is explained by

the fact that the models are acting as guards against local minima for each other. Say one model diverges

from a good solution and one of its clusters lands on a bad point (happens frequently in EM), then other

models, acting as CS components from the first model’s perspective, will tend to pull it away from that

bad point. Overall, the search becomes less sensitive to local shallow minima. Of course deep local

minima are much harder to recover from, but that problem will never go away as it is a fundamental

problem in optimization theory and practice.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

12

5 Empirical Evaluation

This paper targets scaling the EM algorithm and comparing performance with available alternatives. We

do not address the issue of choosing initial models parameters (see [BF98,FRB98,MH98]) nor do we

address the issue of setting the number of clusters k (an open research problem, e.g. [CS96,S96]). The

goal is to study scalability properties and performance for a given k and set of initial conditions.

Comparing against alternatives is based on quality of obtained solutions. It is an established fact in the

statistical literature [PE96,GMPS97,CS96] that EM modeling results in better quality models than other

simpler alternatives like k-Means (upon which algorithms like BIRCH [ZRL97] and CLARANS [NH94]).

There is no prior work on scaling EM so we compare against de facto standard practices for dealing with

large databases: sampling-based and on-line algorithms. Other scalable clustering algorithms exist, but do

not produce mixture model representations of the database probability density function (e.g. BIRCH,

DBSCAN [SEKX98], CLARANS, CURE [GRS98], etc.) Three techniques estimating mixture model

parameters over large databases are evaluated: scalable EM (SEM), standard or “vanilla” EM run over

random samples of the database (VEM), and an online EM implementation (OEM) [NH99, DM92]. The

online EM algorithm is a stochastic gradient descent approach that operates by updating the initial

mixture model one record at a time [DM92]. A single record is read and its membership probabilities in

each of the k clusters is computed. The cluster parameters are then updated and the record is purged from

memory.

SEM has three major parameters: primary compression factor p (Section 3.3.1), standard tolerance β

(Section 3.3.2), and number of secondary clusters k’ (Section 3.3.2). Throughout all experiments we set

these parameters to constant values: p = 0.5, β = 0.5(maximum global data variance), k’ = 2k. We study

the sensitivity to these parameters in Section 5.2 where we explicitly vary them.

5.1 Synthetic Data

In clustering, it is difficult to judge the quality of a produced solution as the true solution is unknown.

Hence studying the algorithm on synthetically generated data is important to verify correctness and to

understand the effect of parameters, etc. Synthetic databases were generated by sampling from k = 10

multivariate Gaussian distributions. Gaussian means were chosen uniformly on [0.0, 10.0] and diagonal

covariance matrices were chosen uniformly on [0.8, 1.2]. It is expected for a large number of attributes,

the clusters are fairly separated. For all tests initial mixture model parameters were chosen randomly.

Each attribute is normalized to have global mean zero and global standard deviation equal to one to

simplify analysis.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

13

5.1.1 Scalability

The running time of SEM is compared with VEM without sampling. All databases in this evaluation had

d = 25 attributes and had 10k, 400k, 600k and 1M records. SEM was run with maximum buffer size =

5% total database size. SEM and VEM each updated 10 mixture models simultaneously. VEM was not

constrained to a single database scan, nor to a limited RAM requirement. Tests were run on a P400

Pentium workstation with 128 MB RAM. Results are summarized in Figure 5.1.

Application of VEM to the database with 1M (1000k) records could not be completed on the system

described above and was run on a P300 PentiumII workstation with 256 MB RAM. We note that for

databases with 25 continuous attributes, the system RAM limit of 128 MB is reached at 640k records,

ignoring any other RAM requirements. Paging was observed for VEM over the databases with 600k and

1000k records. As expected, SEM scales linearly.

However, note that SEM is running faster than the full in-memory VEM algorithm for databases

that fit in memory: 10k and 400k records. We expect the scalable implementation to run slightly slower

in this range. The explanation has two parts. First, we have observed empirically that EM typically tends

to iterate fewer times with less data. Second, our approach has a localized memory access pattern, and

hence allows the operating system to utilize faster CPU caches. Pentium II processors have on-chip

memory caches, and we suspect we are optimizing their use. The traditional VEM implementation does

an in-memory scan of the full data at each iteration, hence the likelihood of a cache fault is high.

5.1.2 Cluster Quality

Cluster quality is quantified by the log likelihood of the data under the computed mixture model

(Equation 4). This measure quantifies the likelihood that the database records were generated by the

computed mixture model [B95]. It was empirically determined that SEM running time was 5 times

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000

Number of Records (k)

R
un

ni
ng

 T
im

e
(s

ec
)

Scalable EM

Vanilla EM

Figure 5.1: Running time versus number of records

-250

-200

-150

-100

-50

0

5 25 45

Number of Attributes

A
ve

ra
ge

 L
og

 L
ik

el
ih

oo
d

Scalable EM

Vanilla EM

Online EM

Figure 5.2: Quality versus number of attributes.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

14

-52

-51.8

-51.6

-51.4

-51.2

-51

-50.8

-50.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p = Primary Compression Factor

A
ve

. L
og

 L
ik

el
ih

oo
d

Figure 5.5: Quality vs. primary compression factor.

-51.5
-51.4
-51.3
-51.2
-51.1

-51
-50.9
-50.8
-50.7
-50.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

A
ve

ra
ge

 L
og

 L
ik

el
ih

oo
d

Figure 5.6: Quality versus standard tolerance.

VEM running time over buffer sizes/sample percentages of 5% and 10%. Hence, VEM is allowed to

explore 5 times the number of SEM models for these percentages. SEM running time was 10 times VEM

and OEM time over buffer/samples of 1%, 0.5% and 0.1% and these algorithms explore 10 times the

number of SEM models for these values.

Number of Database Attributes and Clusters

Figure 5.2 summarizes results comparing quality of mixture models computed by SEM, VEM and OEM

for databases with 50k records and varying number attributes. Cluster quality degrades linearly for

mixture models computed by SEM (with buffer size equivalent to 1% of the database), VEM (running

over 1% random samples) and OEM. The degradation for SEM is most graceful. Detailed results are

shown in Figures 5.3 and 5.4 where we compare the distance between true Gaussian means and computed

solutions. Note the graphs show ratios of distances relative to best solution, so differences are very

significant. Number of clusters for these figures changed from 5 clusters at 20k records, to 10 clusters at

50k records. Similar results are observed for 100 clusters at 100k records, in 100 dimensions.

5.2 Parameter Sensitivity

Varying Primary Compression Factor (see Section 3.3.1): Evaluations of cluster quality for various

values of the primary compression factor p were conducted over a synthetic database with 50k records

and 50 dimensions. See Figure 5.5. Secondary compression was not used by SEM in these tests. For

small values of p (near 0.0), there is little or no compression, the memory buffer fills and SEM terminates

0

10

20

30

40

50

60
D

is
ta

nc
e

(E
uc

lid
ea

n)

SEM (1%) SEM (5%) Samp EM
(1%)

Samp EM
(5%)

Samp EM
(10%)

OEM
(100%)

Ratios of Distance to True Gaussian

Figure 5.3: Quality of Solutions (20K records, d=20).

0

10

20

30

40

50

D
is

ta
nc

e
(E

uc
li d

ea
n)

SEM (1%) SEM (5%) Samp EM
(1%)

Samp EM
(5%)

Samp EM
(10%)

OEM
(100%)

Ratios of Distance to True Gaussian
M eans (50k points, d=50)

Figure 5.4: Quality of Solutions (50K records, d=50).

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

15

-10 0

-5 0

0

5 0

10 0

15 0

10 15 20 25

k = N u m b er o f C lusters

A
ve

ra
ge

 L
og

 L
ik

el
ih

oo
d

S E M 1 0 %

(V E M 1 0 %)/1 E 4

Figure 5.7: Quality versus k [Reuters]

prior to processing the entire database, hence poor mixture models are obtained. For large values of p

(near 1.0), almost all of the data is compressed in the primary phase and data resolution is lost; poor

mixture models are also obtained. Optimal values for p occur between these two extremes. The curve

exhibits reasonable robustness away from extrema.

Varying Standard Tolerance β (see Section 3.3.2): Evaluations of cluster quality for various values of

β were conducted. The primary compression factor p was set to 0.5 (default), the maximum buffer size

was 100kB. We allowed SEM to construct large candidate secondary sub-clusters to better study the

effects of β. Figure 5.6 shows that cluster quality remains high for values of β to 0.8. For small values

of β (near 0.0), secondary compression is minimal and hence there is no loss of data resolution. As β is

increased, secondary compression plays a larger role. For values of β in [0.2,0.6], when compression

does occur, the sub-clusters are “tight” and data resolution is preserved, hence quality solutions are

obtained. For large values of β, data resolution is lost and the mixture model quality suffers, as expected.

5.3 Real World Data

SEM parameter settings were set to their defaults. Initial mixture model values were chosen randomly.

The sampling rate varied from 1% to 10% for smaller data sets, and were varied from 0.1% to 1% for

larger data sets (to keep buffer sizes small as we move to large databases).

Reuters Information Retrieval Database: The Reuters text classification database is derived from the

original Reuters-21578 corpus (see www.research.att.com/~lewis/reuters21578/README.txt). It consists of 12,902

news articles. Our data subset consists of word count vectors for the most popular 302 keywords for each

of the 12,902 documents. The database was globally normalized and mixture models with k = 10

Gaussians were computed. Results are summarized in the following table showing the difference in log

likelihood from the best solution. The results are averaged over 10 models for SEM and 50 models for

VEM (10% and 5%) and 100 models for OEM and VEM (1%) are shown in Table 5.1.

The models computed via SEM for all buffer sizes/sample percentages are superior.

Figure 5.7 summarizes results of applying SEM and VEM with 10% buffer size/sample percentage for

various values of k. Notice that SEM exploits the

added freedom of more clusters and computes

improved models as k increases. VEM has great

Table 5.1: Delta Log Likelihoods for Reuters

 Buffer size as percent of DB size
Method 10% 5% 1%
SEM 0 -51.8 -228.8
VEM -63.9x104 -114.8 x104 -1568.9 x104
OEM -408.4

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

16

difficulty improving solutions as k grows.

Census Database: The U.S. Bureau Census “adult” is publicly available from U.C. Irvine repository, but

a larger version was obtained from SGI’s public archive on data mining. The subset used here consists of

299,285 records each having 11 numeric attributes. Results are summarized in the following table, again

these are differences in log likelihood to best model:

Scalable EM (SEM) Sampling EM (VEM) OEM
5% 1% 0.5% 0.1% 5% 1% 0.5% 0.1% 100%
-0.0178 0 -1.8706 -3.0047 -8.119 -14204.2 -1486.35 -85241.8 -33.6861

For all tests SEM produced better mixture models than either VEM or OEM. Given enough memory,

VEM will generate the best model by definition. But if the memory budget for is severely constrained,

SEM computes superior models over either VEM or OEM on the Census database.

Astronomy Database: The Astronomy database consists of measurements of sky objects from the

Second Palomar Sky Survey at Caltech. Number of records is 648,291, each representing objects on a

photographic plate having 29 numeric attributes. Results are summarized in the following table.

Scalable EM (SEM) Sampling EM (VEM) OEM
1% 0.5% 0.1% 1% 0.5% 0.1% 100%
-197.826 -86.737 0 -216.901 -225.36 -892.29 43.490

Note that in this case OEM performed the best. This is a bit surprising. In fact it does better than running

VEM with even larger samples (e.g. 10% or more). We have no good explanation at this time. However,

note that SEM significantly outperformed VEM, consistent with our expectation.

REV Digits Recognition Database: The REV Digits database consists of 13,711 data items with 64

attributes. Due to small number of records, we used larger buffer sizes. Each record represents the gray-

scale level of an 8 by 8 image of a handwritten digit. Each attribute has been globally normalized to have

mean zero and standard deviation one. Mixture models with k = 10 Gaussian components were computed.

On this data set, we observe comparable performance between SEM and VEM at the 5% and 10% sample

levels. OEM did significantly worse (by a factor of 1.3). VEM at 1% level deteriorated to OEM’s

performance while SEM remained at same original level. In this data set we believe all clustering

methods are computing poor models (hence similar quality). It was reassuring that SEM remained stable

as buffer size/sample percentage was decreased.

6 Related Work

The closest approach to this work is proposed in [NH99] in which incremental versions of the general EM

algorithm are analyzed. In this case the E-Step consists not only of updating the distribution over the

unobserved variables, but also updating the sufficient statistics given this distribution. Its operation is

similar to OEM except that sufficient statistics are kept with each cluster. Our method introduces the

notion of secondary compression and the CS set. Furthermore, our framework is specifically designed to

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

17

operate over a single scan of the database. In contrast, the results of [NH99] indicate that multiple scans

of the database are required.

The BIRCH algorithm [ZRL97] first summarizes the database in a main memory, balanced tree structure,

the CF-tree. The resolution of the data summarization is determined by the amount of main memory

allocated to this structure. The nodes of the CF-tree compress the data as spherical Gaussian distributions

with a single scalar variance. In contrast, SEM admits covariance matrices. BIRCH also takes a second

pass to cluster the compressed representation once the first pass terminates. The fundamental difference

between BIRCH and the scalable EM algorithm lies in the approach to data compression. BIRCH

compresses data as a step independent of the clustering algorithm whereas the scalable EM algorithm’s

compression is closely related to the current fit of the mixture model to the data. In addition, SEM can

accommodate probabilistic cluster membership weights. BIRCH is designed to support the k-Means

algorithm and not the probabilistic EM algorithm. However, the CF-tree structure can be used to do non-

parametric (kernel-based) density estimation with a large number of kernels [LRZ96].

A set of related clustering algorithms, which for the same reasons cannot be compared with our density

estimation approach, are DBSCAN, GDBSCAN [SEKX98], and CLARANS [NH94] which are designed

primarily for spatial data clustering. DBSCAN and GDBSCAN are region growing algorithms and do not

aim to probabilistically model the density. The same applies to the CLIQUE algorithm [AGGR98] which

grows dense data regions by attempting to find all clustered subspaces of the original data space and

present the result to the user in a minimal DNF expression. CLIQUE requires many data scans to

identifying cluster subspaces in the bottom-up fashion. It does not naturally extend itself to a

probabilistic interpretation. In fact the authors state that a data mining algorithm “… should not presume

some canonical form for data distribution.”

The CURE algorithm [GRS98] is a scalable clustering technique based upon the hierarchical

agglomerative clustering (HAC) approach. Initially each data record is considered a cluster and the two

nearest clusters are merged. The difference between CURE and standard HAC is that clusters are

represented by a given number of "well-scattered" records within each cluster. This set of points,

determined in the merging procedure are "shrunk" toward the cluster mean by a multiplier α in [0,1]. The

authors state that the shrinking process reduces the effect of outliers. It is also stated that representing the

cluster by a set of "well-scattered" points allows CURE to recognize non-spherical clusters. The CURE

algorithm is scaled via random sampling and the authors present a theoretical result stating the sufficient

sample size so that a given number of points from each cluster appear in the random sample. The

algorithm is also scaled by employing a pre-clustering phase and applying CURE to the result. This is

conceptually similar to the technique employed by BIRCH [ZRL97].

In addition to differences between hierarchical and mixture model approaches [DH73], the fundamental

difference between CURE and scalable EM are threefold: (i) data compression to achieve scalability is

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

18

done independent of the clustering algorithm, there is no notion of fit of the clustering solution to the

database, (ii) the approach is not naturally extended to multiple model updates, and (iii) the representation

of a cluster as a group of “well-separated” records does not readily give rise to a probabilistic model or

notion of density estimation.

7 Conclusion

The algorithm presented effectively scales to very large databases. Required memory consists of holding

a small sub-sample in RAM. All clustering (primary and secondary) occurs over the contents of the

buffer. The approach can be run with a small RAM buffer and can effectively be applied to large-scale

databases. We have observed that running multiple solutions typically results in improved performance

of the compression schemes since the synergy between the models being explored allow for added

opportunity for compression. In turn this frees up more space in the buffer and allows the algorithm to

maximize its exposure to new data during model updates. The results indicate that the proposed scalable

scheme produces good solutions and outperforms simple sampling approaches. Simultaneous multiple

model updating decreases the likelihood of converging in a bad local minima with empty clusters. The

retained data vectors/compressed clusters do indeed lead to much better solutions when compared with a

memoryless OEM. This demonstrates memory in addition to the model itself is essential.

Results on real-world data support the utility of SEM in real clustering/data modeling applications. SEM

is particularly suited to modeling databases with many attributes when memory requirements are severe –

results on the Reuters corpus (302 attributes) and the REV Digits database (64 attributes) show SEM to be

superior on this situation. When applied to databases with a large number of records with a severely

constrained memory budget, SEM produces superior models to VEM (Census and Astronomy).

From a DBMS perspective the scheme presented possesses many desirable properties. It satisfies the

goals of one scan or less, forward-only cursor to data for efficient operation over join views, incremental

behavior, and anytime algorithm properties. The scheme can be viewed as a generalized version of a

sampling-based scheme. Terminating after one buffer fill, SEM is VEM over random samples. By

allowing the buffer hold all data in memory, we simulate in-memory VEM. However, our experiments

indicate that even if huge main memory was available on the server, it would not be desirable to increase

the buffer. The smaller data buffers cause the algorithm to exhibit an improved cache behavior due to

localized data access in the inner loop. This leads to faster execution time since the number of accesses to

main memory are minimized. Most modern PC CPU’s have on-chip memory caches.

Fortunately, the scalable framework decouples data and model. In order to update the model, degree of

membership of each data point in the buffer to each cluster is the only requirement. Hence this scheme

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

19

accommodates clustering over discrete data by choosing an appropriate data distribution (e.g. the

Multinomial distribution). We are currently investigating using this framework on mixed attribute types.

8 References

[AGGR98] R. Agrawal, J. Gehrke, D Gunopulos and P Raghavan. “Automatic Subspace Clustering of
High Dimensional Data for Data Mining Applications,” ”, in Proc. ACM SIGMOD Int. Conf. On
Management of Data (SIGMOD98).

[BR93] J. Banfield and A. Raftery, “Model-based gaussian and non-Gaussian Clustering”, Biometrics,
vol. 49: 803-821, pp. 15-34, 1993.

[B95] C. Bishop, 1995. Neural Networks for Pattern Recognition. Oxford University Press.
[BB95] L. Bottou and Y. Bengio. “Convergence Properties of the K-Means Algorithm”, in Advances in

Neural Processing Systems 7, G. Tesauro, D. S. Touretsky, and T. K. Leen (Eds.), MIT Press, 1995.
[B*96] R. Brachman, T. Khabaza, W. Kloesgen, G. Piatetsky-Shapiro, and E. Simoudis, “Industrial

Applications of Data Mining and Knowledge Discovery.” Communications of ACM 39(11). 1996.
[BMS97] P. S. Bradley, O. L. Mangasarian, and W. N. Street. 1997. "Clustering via Concave

Minimization", in Advances in Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan,
and T. Petsche (Eds.) pp 368-374, MIT Press, 1997.

[BF98] P. Bradley and U. Fayyad, “Refining Initial Points for K-Means Clustering”, Proc. 15th
International Conf on Machine Learning, Morgan Kaufmann, 1998.

[BFR98] P. Bradley, U. Fayyad, and C. Reina, “Scaling Clustering Algorithms to Large Databases”,
Proc. 4th International Conf. on Knowledge Discovery and Data Mining (KDD98), AAAI Press, 1998.

[CS96] P. Cheeseman and J. Stutz, “Bayesian Classification (AutoClass): Theory and Results”, in in
Advances in Knowledge Discovery and Data Mining, Fayyad, U., G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy(Eds.), pp. 153-180. MIT Press, 1996.

[DM92] C. Darken and J. Moody. “Towards Faster Stochastic Gradient Search”. In Advances in Neural
Information Processing Systems 4, Moody, Hanson, and Lippmann, (Eds.), Morgan Kaufmann, Palo
Alto, 1992.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Likelihood from Incomplete Data via
theEM algorithm”. Journal of the Royal statistical Society, Series B, 39(1): 1-38, 1977.

[DH73] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. New York: John Wiley and
Sons. 1973

[FHS96] U. Fayyad, D. Haussler, and P. Stolorz. “Mining Science Data.” Communications of the ACM
39(11), 1996.

[FPSU96] Fayyad, U., G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.) Advances in
Knowledge Discovery and Data Mining. MIT Press, 1996.

[FDW97] U. Fayyad, S.G. Djorgovski and N. Weir, “Application of Classification and Clustering to Sky
Survey Cataloging and Analysis”, Computing Science and Statistics, vol. 29(2), E. Wegman and S.
Azen (Eds.), pp. 178-186, Fairfax, VA: Interface Foundation of North America, 1997.

[FRB98] U. Fayyad, Cory Reina, and Paul Bradley, “Refining Initialization of Clustering Algorithms”,
Proc. 4th International Conf. On Knowledge Discovery and Data Mining (KDD98), AAAI Press, 1998.

[F87] D. Fisher. “Knowledge Acquisition via Incremental Conceptual Clustering”. Machine Learning,
2:139-172, 1987.

[F90] K. Fukunaga, Introduction to Statistical Pattern Recognition, San Diego, CA: Academic Press,
1990.

[GKR98] D. Gibson, J. Kleinberg, P. Raghavan. “Clustering Categorical Data: An Approach Based on
Dynamical Systems”. Proc. Of VLDB-98. 1998.

[GMPS97] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. "Statistical Themes and Lessons for
Data Mining", Data Mining and Knowledge Discovery, vol. 1, no. 1. 1997.

Scaling EM Clustering to Large Databases Bradley, Fayyad, and Reina

20

[GRS98] S. Guha, R. Rastogi and K. Shim. “CURE: An Efficient Clustering Algorithm for Large
Databases”, in Proc. ACM SIGMOD Int. Conf. On Management of Data (SIGMOD98). ACM Press,
1998.

[KR89] L. Kaufman and P. Rousseeuw, 1989. Finding Groups in Data, New York: John Wiley and Sons.
[LRZ96] M. Livny, R. Ramakrishnan and T. Zhang. “Fast Density and Probability Estimation Using CF-

Kernel Method for Very Large Databases”. Computer Sciences Technical Report, Computer Sciences
Department, University of Wisconsin-Madison, Madison, WI. July, 1996.

[M67] J. MacQueen, “Some methods for classification and analysis of multivariate observations”, in
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume I,
Statistics, L. M. Le Cam and J. Neyman (Eds.). University of California Press, 1967.

[MH98] M. Meila and D. Heckerman, 1998. "An experimental comparison of several clustering
methods", Microsoft Research Technical Report MSR-TR-98-06, Redmond, WA.

[NH94] R. Ng and J. Han, “Efficient and effective clustering methods for spatial data mining”, Proc of
VLDB-94, 1994.

[NH99] R.M. Neal and G.E. Hinton. “A View of the EM Algorithm that Justifies Incremental, Sparse,
and Other Variants”, Learning in Graphical Models, M. I. Jordan (ed.), MIT Press, 1999.

[PE96] D. Pregibon and J. Elder, “A statistical perspective on knowledge discovery in databases”, in
Advances in Knowledge Discovery and Data Mining, Fayyad, U., G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy(Eds.), pp. 83-116. MIT Press, 1996.

[R92] E. Rasmussen, “Clustering Algorithms”, in Information Retrieval Data Structures and Algorithms,
W. Frakes and R. Baeza-Yates (Eds.), pp. 419-442, Upper Saddle River, NJ: Prentice Hall, 1992.

[SEKX98] J. Sander, M. Ester, H. Kriegel, X. Xu, “Density-based Clustering in Spatial Databases: The
Algorithm GDBSCAN and its Applications”, Data Mining and Knowledge Discovery, 2:2, pp. 169-
194, 1998.

[S92] D. W. Scott, Multivariate Density Estimation, New York: Wiley. 1992
[SI84] S. Z. Selim and M. A. Ismail, "K-Means-Type Algorithms: A Generalized Convergence Theorem

and Characterization of Local Optimality." IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. PAMI-6, No. 1, 1984.

[S86] B.W. Silverman, Density Estimation for Statistics and Data Analysis, London: Chapman & Hall,
1986.

[S96] P. Smyth, "Clustering using Monte Carlo Cross-Validation", Proc. of Second International Conf.
on Knowledge Discovery and Data Mining (KDD96), AAAI Press, 1996.

[ZRL97] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: A new data clustering algorithm and its
applications.” Data Mining and Knowledge Discovery 1(2). 1997.

